
Paul Dowling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841088/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Phase 2 studies of lenalidomide, subcutaneous bortezomib, and dexamethasone as induction therapy in patients with newly diagnosed multiple myeloma. American Journal of Hematology, 2022, 97, 562-573.	4.1	3
2	Saliva-omics in plasma cell disorders- Proof of concept and potential as a non-invasive tool for monitoring disease burden. Journal of Proteomics, 2021, 231, 104015.	2.4	9
3	<i>N</i> -Linked glycosylation profiles of therapeutic induced senescent (TIS) triple negative breast cancer cells (TNBC) and their extracellular vesicle (EV) progeny. Molecular Omics, 2021, 17, 72-85.	2.8	12
4	Proteomic profiling of the interface between the stomach wall and the pancreas in dystrophinopathy. European Journal of Translational Myology, 2021, 31, .	1.7	7
5	The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes, 2021, 9, 9.	3.5	27
6	Aminopeptidase Expression in Multiple Myeloma Associates with Disease Progression and Sensitivity to Melflufen. Cancers, 2021, 13, 1527.	3.7	29
7	Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers, 2021, 13, 1930.	3.7	24
8	Mass Spectrometric Profiling of Extraocular Muscle and Proteomic Adaptations in the mdx-4cv Model of Duchenne Muscular Dystrophy. Life, 2021, 11, 595.	2.4	14
9	Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients. Scientific Reports, 2021, 11, 12866.	3.3	8
10	Clinical Proteomics of Biofluids in Haematological Malignancies. International Journal of Molecular Sciences, 2021, 22, 8021.	4.1	6
11	S100 Calcium Binding Protein Family Members Associate With Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2021, 9, 723016.	3.7	5
12	Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. MBio, 2021, 12, .	4.1	41
13	Identification of Protein Biomarker Signatures for Acute Myeloid Leukemia (AML) Using Both Nontargeted and Targeted Approaches. Proteomes, 2021, 9, 42.	3.5	6
14	Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Review of Proteomics, 2021, 18, 1073-1086.	3.0	11
15	Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers. Histology and Histopathology, 2021, , 18403.	0.7	14
16	Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia, 2020, 34, 196-209.	7.2	48
17	Multi-parametric single cell evaluation defines distinct drug responses in healthy hematologic cells that are retained in corresponding malignant cell types. Haematologica, 2020, 105, 1527-1538.	3.5	19
18	Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy. European Journal of Cell Biology, 2020, 99, 151059.	3.6	19

PAUL DOWLING

#	Article	IF	CITATIONS
19	Proteome-wide Changes in the mdx-4cv Spleen due to Pathophysiological Cross Talk with Dystrophin-Deficient Skeletal Muscle. IScience, 2020, 23, 101500.	4.1	21
20	ldentification of marker proteins of muscular dystrophy in the urine proteome from the <i>mdx-4cv</i> model of dystrophinopathy. Molecular Omics, 2020, 16, 268-278.	2.8	14
21	Dataset on the mass spectrometry-based proteomic profiling of the kidney from wild type and the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. Data in Brief, 2020, 28, 105067.	1.0	3
22	Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Review of Proteomics, 2020, 17, 137-148.	3.0	11
23	Protocol for the Bottom-Up Proteomic Analysis of Mouse Spleen. STAR Protocols, 2020, 1, 100196.	1.2	20
24	Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Review of Molecular Diagnostics, 2019, 19, 739-755.	3.1	24
25	Proteomic profiling of giant skeletal muscle proteins. Expert Review of Proteomics, 2019, 16, 241-256.	3.0	13
26	Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes, 2019, 7, 25.	3.5	25
27	Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers, 2019, 11, 66.	3.7	73
28	DIGE Analysis of ProteoMinerTM Fractionated Serum/Plasma Samples. Methods in Molecular Biology, 2018, 1664, 109-114.	0.9	6
29	DIGE Analysis Software and Protein Identification Approaches. Methods in Molecular Biology, 2018, 1664, 41-50.	0.9	3
30	DIGE Saturation Labeling for Scarce Amounts of Protein from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue. Methods in Molecular Biology, 2018, 1664, 87-91.	0.9	1
31	DIGE Analysis of Immunodepleted Plasma. Methods in Molecular Biology, 2018, 1664, 245-257.	0.9	5
32	Proteomic profiling of mdx-4cv serum reveals highly elevated levels of the inflammation-induced plasma marker haptoglobin in muscular dystrophy. International Journal of Molecular Medicine, 2017, 39, 1357-1370.	4.0	34
33	Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA Clinical, 2017, 7, 97-104.	4.1	25
34	A novel inhibitory anti-invasive MAb isolated using phenotypic screening highlights AnxA6 as a functionally relevant target protein in pancreatic cancer. British Journal of Cancer, 2017, 117, 1326-1335.	6.4	24
35	Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes, 2016, 4, 27.	3.5	35
36	Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Review of Proteomics, 2016, 13, 783-799.	3.0	43

PAUL DOWLING

#	Article	IF	CITATIONS
37	Quantitative label-free mass spectrometry analysis of formalin-fixed, paraffin-embedded tissue representing the invasive cutaneous malignant melanoma proteome. Oncology Letters, 2016, 12, 3296-3304.	1.8	13
38	Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. Journal of Proteomics, 2016, 145, 24-36.	2.4	46
39	Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics, 2016, 16, 345-366.	2.2	40
40	Labelâ€free mass spectrometric analysis of the <i>mdxâ€4cv</i> diaphragm identifies the matricellular protein periostin as a potential factor involved in dystrophinopathyâ€related fibrosis. Proteomics, 2015, 15, 2318-2331.	2.2	51
41	Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer. Clinica Chimica Acta, 2015, 441, 133-141.	1.1	28
42	Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLoS Genetics, 2015, 11, e1005092.	3.5	64
43	The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Letters, 2015, 364, 142-155.	7.2	79
44	Metabolomic and proteomic analysis of breast cancer patient samples suggests that glutamate and 12-HETE in combination with CA15-3 may be useful biomarkers reflecting tumour burden. Metabolomics, 2015, 11, 620-635.	3.0	17
45	Examining the Impact of Altered Protein Expression and Ubiquitination Levels on the Development of Resistance to Proteasome Inhibitors Using Proteomics Analysis. Blood, 2015, 126, 4208-4208.	1.4	0
46	New pathobiochemical insights into dystrophinopathy from the proteomics of senescent mdx mouse muscle. Frontiers in Aging Neuroscience, 2014, 6, 109.	3.4	8
47	Mass Spectrometry-Based Identification of Muscle-Associated and Muscle-Derived Proteomic Biomarkers of Dystrophinopathies. Journal of Neuromuscular Diseases, 2014, 1, 15-40.	2.6	24
48	Identification of proteins found to be significantly altered when comparing the serum proteome from Multiple Myeloma patients with varying degrees of bone disease. BMC Genomics, 2014, 15, 904.	2.8	33
49	Intricate effects of primary motor neuronopathy on contractile proteins and metabolic muscle enzymes as revealed by label-free mass spectrometry. Bioscience Reports, 2014, 34, .	2.4	12
50	Transferrin-bound proteins as potential biomarkers for advanced breast cancer patients. BBA Clinical, 2014, 2, 24-30.	4.1	18
51	Mass Spectrometry-Based Identification of Muscle-Associated and Muscle-Derived Proteomic Biomarkers of Dystrophinopathies. Journal of Neuromuscular Diseases, 2014, 1, 15-40.	2.6	15
52	Proteomic profiling of cardiomyopathic tissue from the aged <i>mdx</i> model of Duchenne muscular dystrophy reveals a drastic decrease in laminin, nidogen and annexin. Proteomics, 2013, 13, 2312-2323.	2.2	46
53	Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Biochemical Journal, 2004, 379, 479-488.	3.7	67
54	Comparative analysis of Dp427-deficient mdx tissues shows that the milder dystrophic phenotype of extraocular and toe muscle fibres is associated with a persistent expression of β-dystroglycan. European Journal of Cell Biology, 2003, 82, 222-230.	3.6	33