Ligong Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6841054/ligong-zhang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66
papers

2,567
citations

26
h-index

49
g-index

67
ext. papers

2,923
ext. citations

5
avg, IF

L-index

#	Paper	IF	Citations
66	On the luminescence of Ti4+ and Eu3+ in monoclinic ZrO2: high performance optical thermometry derived from energy transfer. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 4518-4533	7.1	17
65	Efficient Super Broadband NIR Ca2LuZr2Al3O12:Cr3+,Yb3+ Garnet Phosphor for pc-LED Light Source toward NIR Spectroscopy Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 1901684	8.1	69
64	Digestive Ripening-Mediated Growth of NaYbF4:[email[protected]4 CoreBhell Nanoparticles for Bioimaging. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10049-10056	5.6	3
63	Modulation of Field-Effect Passivation at the Back Electrode Interface Enabling Efficient Kesterite-Type CuZnSn(S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells. <i>ACS Applied Materials & Description</i> (S,Se) Thin-Film Solar Cells.	1 <i>6</i> 3 ⁵ 38	174
62	Laser-quality Tm:(Lu0.8Sc0.2)2O3 mixed sesquioxide ceramics shaped by gelcasting of well-dispersed nanopowders. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4919-4928	3.8	7
61	Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 195, 55-62	6.4	15
60	Electron transport behavior of polymer-derived amorphous silicoboron carbonitrides. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6038-6047	3.8	7
59	Improving the Back Electrode Interface Quality of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using a Novel CuAlO2 Buffer Layer. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2230-2237	6.1	16
58	Self-Organized Back Surface Field to Improve the Performance of CuZnSn(S,Se) Solar Cells by Applying P-Type MoSe:Nb to the Back Electrode Interface. <i>ACS Applied Materials & Discrete Solar (S)</i> 11, 31851-31859	9.5	12
57	Er3+/Yb3+ codoped phosphor Ba3Y4O9 with intense red upconversion emission and optical temperature sensing behavior. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3459-3467	7.1	65
56	Eu and F co-doped ZnO-based transparent electrodes for organic and quantum dot light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5542-5551	7.1	11
55	Efficient Blue-emitting Phosphor SrLuO:Ce with High Thermal Stability for Near Ultraviolet (~400 nm) LED-Chip based White LEDs. <i>Scientific Reports</i> , 2018 , 8, 10463	4.9	19
54	Hydrothermal Synthesis and Upconversion Properties of About 19[hm ScO: Er, Yb Nanoparticles with Detailed Investigation of the Energy Transfer Mechanism. <i>Nanoscale Research Letters</i> , 2018 , 13, 372	5	7
53	Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence. <i>Materials</i> , 2018 , 11,	3.5	2
52	Investigation of Interface Effect on the Performance of CHNHPbCl/ZnO UV Photodetectors. <i>ACS Applied Materials & Discrete Applied &</i>	9.5	32
51	Cooperative Upconversion Luminescence Properties of Yb3+ and Tb3+ Heavily Codoped Silicate Garnet Obtained by Multiple Chemical Unit Cosubstitution. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 2998-3006	3.8	11
50	Origin of Anisotropic Photoluminescence in Heteroatom-Doped Carbon Nanodots. <i>Advanced Optical Materials</i> , 2017 , 5, 1601049	8.1	24

(2014-2017)

49	Shallow Acceptor State in Mg-Doped CuAlO and Its Effect on Electrical and Optical Properties: An Experimental and First-Principles Study. <i>ACS Applied Materials & District Amplied Materials & District & Dis</i>	9.5	19	
48	The Inductive Effect of Neighboring Cations in Tuning Luminescence Properties of the Solid Solution Phosphors. <i>Inorganic Chemistry</i> , 2017 , 56, 9938-9945	5.1	14	
47	Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 124-30	11.8	55	
46	Constructing bulk defective perovskite SrTiO nanocubes for high performance photocatalysts. <i>Nanoscale</i> , 2016 , 8, 16963-16968	7.7	62	
45	Photoluminescence and photocatalytic properties of rhombohedral CuGaO2 nanoplates. <i>Scientific Reports</i> , 2016 , 6, 21135	4.9	34	
44	The formation and characteristics of ZnO/AlN and ZnO/AlN/ZnO core-shell nanowires. <i>Integrated Ferroelectrics</i> , 2016 , 172, 25-31	0.8		
43	Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2840-6	9.5	81	
42	Red emission generation through highly efficient energy transfer from Ce(3+) to Mn(2+) in CaO for warm white LEDs. <i>Dalton Transactions</i> , 2016 , 45, 1539-45	4.3	28	
41	A nanoscaled lanthanide metalBrganic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7294-73	807 ^{.1}	93	
40	Blue-emitting K2Al2B2O7:Eu(2+) phosphor with high thermal stability and high color purity for near-UV-pumped white light-emitting diodes. <i>Inorganic Chemistry</i> , 2015 , 54, 3189-95	5.1	116	
39	Influence of Exciton Localization on the Emission and Ultraviolet Photoresponse of ZnO/ZnS Core-Shell Nanowires. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 10331-6	9.5	44	
38	Efficient near-infrared downconversion and energy transfer mechanism of ce(3+)/yb(3+) codoped calcium scandate phosphor. <i>Inorganic Chemistry</i> , 2015 , 54, 4806-10	5.1	38	
37	Evolution in the Electronic Structure of Polymer-derived Amorphous Silicon Carbide. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 2153-2158	3.8	13	
36	Synthesis of ZnO nanowires on aluminum flake by aqueous method. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 114, 1209-1213	2.6	2	
35	On electronic structure of polymer-derived amorphous silicon carbide ceramics. <i>Applied Physics Letters</i> , 2014 , 104, 221902	3.4	12	
34	Highly Luminescent Carbon-Nanoparticle-Based Materials: Factors Influencing Photoluminescence Quantum Yield. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 1175-1182	3.1	39	
33	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. <i>Scientific Reports</i> , 2014 , 4, 5294	4.9	639	
32	The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes. <i>Scientific Reports</i> , 2014 , 4, 6974	4.9	58	

31	Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. <i>Advanced Functional Materials</i> , 2014 , 24, 2689-2695	15.6	171
30	An intense blue-emitting phosphor for near-ultraviolet pumped white-light-emitting diodes: Ce3+-activated ECa2SiO4. <i>Journal of Luminescence</i> , 2014 , 152, 40-43	3.8	28
29	Monochromatic visible light-driven photocatalysis realized on 2D ZnO shell arrays. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9132	13	10
28	Photoinduced Charge Separation and Recombination Processes in CdSe Quantum Dot and Graphene Oxide Composites with Methylene Blue as Linker. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2919-2925	6.4	11
27	Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. <i>Journal of Applied Physics</i> , 2013 , 113, 193105	2.5	11
26	Size-controllable Synthesis of Hierarchically Structured Mesoporous Anatase TiO2 Microspheres Covered With {001} Facet. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1578, 1		
25	Hybrid dandelion-like YH(O3PC6H5)2:Ln (Ln = Eu3+, Tb3+) particles: formation mechanism, thermal and photoluminescence properties. <i>CrystEngComm</i> , 2011 , 13, 5226	3.3	6
24	A facile template-free route to fabricate highly luminescent mesoporous gadolinium oxides. <i>CrystEngComm</i> , 2011 , 13, 4831	3.3	18
23	Structure and Optical Property of Polymer-Derived Amorphous Silicon Oxycarbides Obtained at Different Temperatures. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3359-3363	3.8	8
22	Electrospinning preparation and photoluminescence properties of SrAl2O4:Ce3+ nanowires. <i>Journal of Materials Science</i> , 2011 , 46, 7517-7524	4.3	12
21	Efficient energy transfer from hole transporting materials to CdSe-core CdS/ZnCdS/ZnS-multishell quantum dots in type II aligned blend films. <i>Applied Physics Letters</i> , 2011 , 99, 093106	3.4	19
20	Aluminum nanocomposites having wear resistance better than stainless steel. <i>Journal of Materials Research</i> , 2011 , 26, 2479-2483	2.5	12
19	Emission evolution of alpha-silicon nitride nanowires with temperature. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 9795-8	1.3	1
18	Optical Properties of Heavily Al-Doped Single-Crystal Si3N4 Nanobelts. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1364	3.8	29
17	Synthesis and characterization of multifunctional CdTe/Fe2O3@SiO2 core/shell nanosensors for Hg2+ ions detection. <i>New Journal of Chemistry</i> , 2010 , 34, 2996	3.6	11
16	Oxygen diffusion through Al-doped amorphous SiO2. <i>Journal of Phase Equilibria and Diffusion</i> , 2006 , 27, 671-675	1	21
15	Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapor. <i>Journal of Materials Research</i> , 2006 , 21, 1625-1628	2.5	60
14	Synthesis of Nd/Si Codoped YAG Powders via a Solvothermal Method. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3570-3572	3.8	18

LIST OF PUBLICATIONS

13	Comparison of computed tomographic and standard radiographic determination of tibial torsion in the dog. <i>Veterinary Surgery</i> , 2005 , 34, 457-62	1.7	44
12	Synthesis, Characterization, and Optical Properties of Pristine and Doped Yttrium Aluminum Garnet Nanopowders. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 284-286	3.8	25
11	Polygonal Single-Crystal Aluminum Borate Microtubes. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 485-487	3.8	16
10	Ultra-Long Single-Crystalline ⊞i3N4 Nanowires: Derived from a Polymeric Precursor. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1647-1650	3.8	68
9	Phase Transformation of Mechanically Milled Nano-Sized EAlumina. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2559-2563	3.8	31
8	Polymer D eramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2415-2419	3.8	64
7	Oxidation of Polymer-Derived SiAlCN Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 3075	-3,0880	59
6	Oxidation Behavior of a Fully Dense Polymer-Derived Amorphous Silicon Carbonitride Ceramic. Journal of the American Ceramic Society, 2004 , 87, 483-486	3.8	83
5	Synthesis and size control of monodisperse manganese-doped ZnS nanoparticles by methacrylate polymer. <i>Colloid and Polymer Science</i> , 2003 , 281, 178-181	2.4	1
4	Structure and strong ultraviolet emission characteristics of amorphous ZnO films grown by electrophoretic deposition. <i>Journal of Materials Research</i> , 2003 , 18, 151-155	2.5	24
3	Structure and photoluminescence properties of ZnO microrods. <i>Journal of Applied Physics</i> , 2003 , 94, 560	05:560)8 28
2	Chemical synthesis and characterization of Cu doped ZnS nano-powder. <i>Journal of Materials Science Letters</i> , 2002 , 21, 1031-1033		6
1	23.4: A Liquid Crystal Fresnel Zone Device and Its Light Focusing Properties. <i>Digest of Technical Papers SID International Symposium</i> , 2001 , 32, 366	0.5	1