Ligong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841054/publications.pdf Version: 2024-02-01

LICONG ZHANG

#	Article	IF	CITATIONS
1	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	1.6	759
2	Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. Advanced Functional Materials, 2014, 24, 2689-2695.	7.8	206
3	Efficient Super Broadband NIR Ca ₂ LuZr ₂ Al ₃ O ₁₂ :Cr ³⁺ ,Yb ³⁺ Garnet Phosphor for pcâ€LED Light Source toward NIR Spectroscopy Applications. Advanced Optical Materials, 2020, 8, 1901684.	3.6	175
4	Blue-Emitting K ₂ Al ₂ B ₂ O ₇ :Eu ²⁺ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes. Inorganic Chemistry, 2015, 54, 3189-3195.	1.9	137
5	A nanoscaled lanthanide metal–organic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer. Journal of Materials Chemistry C, 2016, 4, 7294-7301.	2.7	131
6	Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 2840-2846.	4.0	103
7	Er ³⁺ /Yb ³⁺ codoped phosphor Ba ₃ Y ₄ O ₉ with intense red upconversion emission and optical temperature sensing behavior. Journal of Materials Chemistry C, 2018, 6, 3459-3467.	2.7	99
8	Oxidation Behavior of a Fully Dense Polymerâ€Derived Amorphous Silicon Carbonitride Ceramic. Journal of the American Ceramic Society, 2004, 87, 483-486.	1.9	88
9	Constructing bulk defective perovskite SrTiO ₃ nanocubes for high performance photocatalysts. Nanoscale, 2016, 8, 16963-16968.	2.8	82
10	Ultra-Long Single-Crystalline alpha-Si3N4 Nanowires: Derived from a Polymeric Precursor. Journal of the American Ceramic Society, 2005, 88, 1647-1650.	1.9	75
11	The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes. Scientific Reports, 2014, 4, 6974.	1.6	73
12	Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapor. Journal of Materials Research, 2006, 21, 1625-1628.	1.2	71
13	Oxidation of Polymer-Derived SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 3075-3080.	1.9	70
14	Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 2415-2419.	1.9	69
15	Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosensors and Bioelectronics, 2016, 77, 124-130.	5.3	69
16	Comparison of Computed Tomographic and Standard Radiographic Determination of Tibial Torsion in the Dog. Veterinary Surgery, 2005, 34, 457-462.	0.5	57
17	Influence of Exciton Localization on the Emission and Ultraviolet Photoresponse of ZnO/ZnS Core–Shell Nanowires. ACS Applied Materials & Interfaces, 2015, 7, 10331-10336.	4.0	50
18	Efficient Near-Infrared Downconversion and Energy Transfer Mechanism of Ce ³⁺ /Yb ³⁺ Codoped Calcium Scandate Phosphor. Inorganic Chemistry, 2015, 54, 4806-4810.	1.9	49

LIGONG ZHANG

#	Article	IF	CITATIONS
19	Highly Luminescent Carbonâ€Nanoparticleâ€Based Materials: Factors Influencing Photoluminescence Quantum Yield. Particle and Particle Systems Characterization, 2014, 31, 1175-1182.	1.2	44
20	Investigation of Interface Effect on the Performance of CH ₃ NH ₃ PbCl ₃ /ZnO UV Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 34744-34750.	4.0	40
21	Photoluminescence and photocatalytic properties of rhombohedral CuGaO2 nanoplates. Scientific Reports, 2016, 6, 21135.	1.6	39
22	Shallow Acceptor State in Mg-Doped CuAlO ₂ and Its Effect on Electrical and Optical Properties: An Experimental and First-Principles Study. ACS Applied Materials & Interfaces, 2017, 9, 12608-12616.	4.0	35
23	Phase Transformation of Mechanically Milled Nano-Sized gamma-Alumina. Journal of the American Ceramic Society, 2005, 88, 2559-2563.	1.9	34
24	Origin of Anisotropic Photoluminescence in Heteroatomâ€Doped Carbon Nanodots. Advanced Optical Materials, 2017, 5, 1601049.	3.6	34
25	Red emission generation through highly efficient energy transfer from Ce ³⁺ to Mn ²⁺ in CaO for warm white LEDs. Dalton Transactions, 2016, 45, 1539-1545.	1.6	33
26	Optical Properties of Heavily Alâ€Doped Singleâ€Crystal Si ₃ N ₄ Nanobelts. Journal of the American Ceramic Society, 2010, 93, 1364-1367.	1.9	32
27	Improving the Back Electrode Interface Quality of Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells Using a Novel CuAlO ₂ Buffer Layer. ACS Applied Energy Materials, 2019, 2, 2230-2237.	2.5	31
28	Structure and photoluminescence properties of ZnO microrods. Journal of Applied Physics, 2003, 94, 5605-5608.	1.1	29
29	An intense blue-emitting phosphor for near-ultraviolet pumped white-light-emitting diodes: Ce3+-activated β-Ca2SiO4. Journal of Luminescence, 2014, 152, 40-43.	1.5	29
30	On the luminescence of Ti ⁴⁺ and Eu ³⁺ in monoclinic ZrO ₂ : high performance optical thermometry derived from energy transfer. Journal of Materials Chemistry C, 2020, 8, 4518-4533.	2.7	29
31	Structure and strong ultraviolet emission characteristics of amorphous ZnO films grown by electrophoretic deposition. Journal of Materials Research, 2003, 18, 151-155.	1.2	28
32	Synthesis, Characterization, and Optical Properties of Pristine and Doped Yttrium Aluminum Garnet Nanopowders. Journal of the American Ceramic Society, 2005, 88, 284-286.	1.9	28
33	Efficient Blue-emitting Phosphor SrLu2O4:Ce3+ with High Thermal Stability for Near Ultraviolet (~400 nm) LED-Chip based White LEDs. Scientific Reports, 2018, 8, 10463.	1.6	27
34	Oxygen diffusion through Al-doped amorphous SiO2. Journal of Phase Equilibria and Diffusion, 2006, 27, 671-675.	0.5	25
35	Self-Organized Back Surface Field to Improve the Performance of Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Applying P-Type MoSe ₂ :Nb to the Back Electrode Interface. ACS Applied Materials & Interfaces, 2019, 11, 31851-31859.	4.0	24
36	A facile template-free route to fabricate highly luminescent mesoporous gadolinium oxides. CrystEngComm, 2011, 13, 4831.	1.3	20

LIGONG ZHANG

#	Article	IF	CITATIONS
37	The Inductive Effect of Neighboring Cations in Tuning Luminescence Properties of the Solid Solution Phosphors. Inorganic Chemistry, 2017, 56, 9938-9945.	1.9	20
38	Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach. Solar Energy Materials and Solar Cells, 2019, 195, 55-62.	3.0	20
39	Synthesis of Nd/Si Codoped YAG Powders via a Solvothermal Method. Journal of the American Ceramic Society, 2006, 89, 3570-3572.	1.9	19
40	Efficient energy transfer from hole transporting materials to CdSe-core CdS/ZnCdS/ZnS-multishell quantum dots in type II aligned blend films. Applied Physics Letters, 2011, 99, 093106.	1.5	19
41	Modulation of Field-Effect Passivation at the Back Electrode Interface Enabling Efficient Kesterite-Type Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38163-38174.	4.0	18
42	Polygonal Single-Crystal Aluminum Borate Microtubes. Journal of the American Ceramic Society, 2005, 88, 485-487.	1.9	16
43	Electrospinning preparation and photoluminescence properties of SrAl2O4:Ce3+ nanowires. Journal of Materials Science, 2011, 46, 7517-7524.	1.7	16
44	Cooperative Upconversion Luminescence Properties of Yb ³⁺ and Tb ³⁺ Heavily Codoped Silicate Garnet Obtained by Multiple Chemical Unit Cosubstitution. Journal of Physical Chemistry C, 2017, 121, 2998-3006.	1.5	15
45	Laserâ€quality Tm:(Lu _{0.8} Sc _{0.2}) ₂ O ₃ mixed sesquioxide ceramics shaped by gelcasting of wellâ€dispersed nanopowders. Journal of the American Ceramic Society, 2019, 102, 4919-4928.	1.9	15
46	Evolution in the Electronic Structure of Polymerâ€derived Amorphous Silicon Carbide. Journal of the American Ceramic Society, 2015, 98, 2153-2158.	1.9	14
47	Eu and F co-doped ZnO-based transparent electrodes for organic and quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5542-5551.	2.7	14
48	Monochromatic visible light-driven photocatalysis realized on 2D ZnO shell arrays. Journal of Materials Chemistry A, 2013, 1, 9132.	5.2	13
49	Photoinduced Charge Separation and Recombination Processes in CdSe Quantum Dot and Graphene Oxide Composites with Methylene Blue as Linker. Journal of Physical Chemistry Letters, 2013, 4, 2919-2925.	2.1	13
50	Electron transport behavior of polymerâ€derived amorphous silicoboron carbonitrides. Journal of the American Ceramic Society, 2019, 102, 6038-6047.	1.9	13
51	Synthesis and characterization of multifunctional CdTe/Fe2O3@SiO2 core/shell nanosensors for Hg2+ ions detection. New Journal of Chemistry, 2010, 34, 2996.	1.4	12
52	Aluminum nanocomposites having wear resistance better than stainless steel. Journal of Materials Research, 2011, 26, 2479-2483.	1.2	12
53	On electronic structure of polymer-derived amorphous silicon carbide ceramics. Applied Physics Letters, 2014, 104, .	1.5	12
54	Hydrothermal Synthesis and Upconversion Properties of About 19Ânm Sc2O3: Er3+, Yb3+ Nanoparticles with Detailed Investigation of the Energy Transfer Mechanism. Nanoscale Research Letters, 2018, 13, 372.	3.1	12

LIGONG ZHANG

#	ARTICLE	IF	CITATIONS
55	Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. Journal of Applied Physics, 2013, 113, 193105.	1.1	11
56	Structure and Optical Property of Polymerâ€Derived Amorphous Silicon Oxycarbides Obtained at Different Temperatures. Journal of the American Ceramic Society, 2011, 94, 3359-3363.	1.9	9
57	Digestive Ripening-Mediated Growth of NaYbF ₄ :Tm@NaYF ₄ Core–Shell Nanoparticles for Bioimaging. ACS Applied Nano Materials, 2020, 3, 10049-10056.	2.4	7
58	Chemical synthesis and characterization of Cu doped ZnS nano-powder. Journal of Materials Science Letters, 2002, 21, 1031-1033.	0.5	6
59	Hybrid dandelion-like YH(O3PC6H5)2:Ln (Ln = Eu3+, Tb3+) particles: formation mechanism, thermal and photoluminescence properties. CrystEngComm, 2011, 13, 5226.	1.3	6
60	Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence. Materials, 2018, 11, 1049.	1.3	4
61	23.4: A Liquid Crystal Fresnel Zone Device and Its Light Focusing Properties. Digest of Technical Papers SID International Symposium, 2001, 32, 366.	0.1	2
62	Synthesis of ZnO nanowires on aluminum flake by aqueous method. Applied Physics A: Materials Science and Processing, 2014, 114, 1209-1213.	1.1	2
63	Synthesis and size control of monodisperse manganese-doped ZnS nanoparticles by methacrylate polymer. Colloid and Polymer Science, 2003, 281, 178-181.	1.0	1
64	Emission Evolution of $\hat{l}\pm$ -Silicon Nitride Nanowires with Temperature. Journal of Nanoscience and Nanotechnology, 2011, 11, 9795-9798.	0.9	1
65	Size-controllable Synthesis of Hierarchically Structured Mesoporous Anatase TiO2 Microspheres Covered With {001} Facet. Materials Research Society Symposia Proceedings, 2013, 1578, 1.	0.1	0
66	The formation and characteristics of ZnO/AlN and ZnO/AlN/ZnO core-shell nanowires. Integrated Ferroelectrics, 2016, 172, 25-31.	0.3	0
67	Carrier Dynamic Investigations of AlGaInAs Quantum Well Revealed by Temperature-Dependent Time-Resolved Photoluminescence. Materials, 2020, 13, 4227.	1.3	0