
Paolo Belardinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6840717/publications.pdf Version: 2024-02-01

PAOLO RELAPOINELLI

#	Article	IF	CITATIONS
1	Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6040-6045.	3.3	664
2	Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimulation, 2018, 11, 374-389.	0.7	310
3	TMS-EEC Signatures of GABAergic Neurotransmission in the Human Cortex. Journal of Neuroscience, 2014, 34, 5603-5612.	1.7	282
4	Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Frontiers in Cellular Neuroscience, 2016, 10, 92.	1.8	151
5	Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG. NeuroImage, 2014, 103, 152-162.	2.1	123
6	Reproducibility in TMS–EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimulation, 2019, 12, 787-790.	0.7	106
7	Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex. Brain Stimulation, 2018, 11, 1322-1330.	0.7	89
8	Effects of the Selective α5-GABAAR Antagonist S44819 on Excitability in the Human Brain: A TMS–EMG and TMS–EEG Phase I Study. Journal of Neuroscience, 2016, 36, 12312-12320.	1.7	85
9	Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches. PLoS ONE, 2012, 7, e51985.	1.1	83
10	Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimulation, 2020, 13, 197-205.	0.7	80
11	The impact of GABAergic drugs on TMS-induced brain oscillations in human motor cortex. NeuroImage, 2017, 163, 1-12.	2.1	73
12	Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. NeuroImage: Clinical, 2017, 14, 726-733.	1.4	68
13	TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Scientific Reports, 2021, 11, 8159.	1.6	50
14	Phase Synchronicity of μ-Rhythm Determines Efficacy of Interhemispheric Communication Between Human Motor Cortices. Journal of Neuroscience, 2018, 38, 10525-10534.	1.7	49
15	Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: A resting-state EEG and TMS-EEG study. Brain Stimulation, 2018, 11, 1024-1032.	0.7	48
16	μ-Rhythm Extracted With Personalized EEG Filters Correlates With Corticospinal Excitability in Real-Time Phase-Triggered EEG-TMS. Frontiers in Neuroscience, 2018, 12, 954.	1.4	46
17	Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses. NeuroImage, 2012, 60, 1478-1489.	2.1	44
18	Phase of sensorimotor μâ€oscillation modulates cortical responses to transcranial magnetic stimulation of the human motor cortex. Journal of Physiology, 2019, 597, 5671-5686.	1.3	44

Paolo Belardinelli

#	Article	IF	CITATIONS
19	Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials. Brain Stimulation, 2018, 11, 818-827.	0.7	43
20	The effects of NMDA receptor blockade on TMS-evoked EEG potentials from prefrontal and parietal cortex. Scientific Reports, 2020, 10, 3168.	1.6	42
21	Recording brain responses to TMS of primary motor cortex by EEG – utility of an optimized sham procedure. NeuroImage, 2021, 245, 118708.	2.1	41
22	Corticomuscular Coherence Is Tuned to the Spontaneous Rhythmicity of Speech at 2–3 Hz. Journal of Neuroscience, 2012, 32, 3786-3790.	1.7	40
23	Weighted Phase Lag Index and Graph Analysis: Preliminary Investigation of Functional Connectivity during Resting State in Children. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-8.	0.7	36
24	Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence. Clinical Neurophysiology, 2017, 128, 2493-2502.	0.7	29
25	Detecting tones in complex auditory scenes. NeuroImage, 2015, 122, 203-213.	2.1	28
26	Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEG. Frontiers in Neuroscience, 2018, 12, 393.	1.4	28
27	An Unsupervised Online Spike-Sorting Framework. International Journal of Neural Systems, 2016, 26, 1550042.	3.2	24
28	Musical Sonification of Arm Movements in Stroke Rehabilitation Yields Limited Benefits. Frontiers in Neuroscience, 2019, 13, 1378.	1.4	24
29	Modulation of alpha oscillations in insular cortex reflects the threat of painful stimuli. NeuroImage, 2009, 46, 1082-1090.	2.1	21
30	Corticomuscular Coherence: a Novel Tool to Assess the Pyramidal Tract Dysfunction in Spinocerebellar Ataxia Type 2. Cerebellum, 2017, 16, 602-606.	1.4	21
31	Brain State-dependent Brain Stimulation with Real-time Electroencephalography-Triggered Transcranial Magnetic Stimulation. Journal of Visualized Experiments, 2019, , .	0.2	17
32	Prefrontal Theta-Phase Synchronized Brain Stimulation With Real-Time EEG-Triggered TMS. Frontiers in Human Neuroscience, 2021, 15, 691821.	1.0	16
33	Nil effects of μ-rhythm phase-dependent burst-rTMS on cortical excitability in humans: A resting-state EEG and TMS-EEG study. PLoS ONE, 2018, 13, e0208747.	1.1	15
34	Bridging the gap: TMS-EEG from lab to clinic. Journal of Neuroscience Methods, 2022, 369, 109482.	1.3	15
35	Source Activity Correlation Effects on LCMV Beamformers in a Realistic Measurement Environment. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-8.	0.7	14
36	Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. NeuroImage, 2019, 195, 190-202.	2.1	13

Paolo Belardinelli

#	Article	IF	CITATIONS
37	Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimulation, 2022, 15, 391-402.	0.7	13
38	Human brain activation elicited by the localization of sounds delivering at attended or unattended positions: an fMRI/MEG study. Cognitive Processing, 2006, 7, 116-117.	0.7	12
39	Bihemispheric sensorimotor oscillatory network states determine cortical responses to transcranial magnetic stimulation. Brain Stimulation, 2022, 15, 167-178.	0.7	10
40	Predicting motor behavior: an efficient EEG signal processing pipeline to detect brain states with potential therapeutic relevance for VR-based neurorehabilitation. Virtual Reality, 2023, 27, 347-369.	4.1	9
41	A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. Journal of Personalized Medicine, 2022, 12, 59.	1.1	9
42	Motor cortex excitability in seizure-free STX1B mutation carriers with a history of epilepsy and febrile seizures. Clinical Neurophysiology, 2017, 128, 2503-2509.	0.7	6
43	Artifacts in EEG-Based BCI Therapies: Friend or Foe?. Sensors, 2022, 22, 96.	2.1	6
44	Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area. Frontiers in Neuroscience, 2018, 12, 361.	1.4	5
45	Functional Connectivity States of Alpha Rhythm Sources in the Human Cortex at Rest: Implications for Real-Time Brain State Dependent EEG-TMS. Brain Sciences, 2022, 12, 348.	1.1	4
46	Intraoperative localization of spatially and spectrally distinct resting-state networks in Parkinson's disease. Journal of Neurosurgery, 2020, 132, 1234-1242.	0.9	3
47	Characterization of GABAA-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. Brain Stimulation, 2015, 8, 387.	0.7	0
48	99. Alpha-Synchronized Stimulation of the Left Dorsolateral Prefrontal Cortex in Depression Using Real-Time EEG-Triggered TMS. Biological Psychiatry, 2019, 85, S41.	0.7	0
49	Alpha-Synchronized Stimulation of the Dorsolateral Prefrontal Cortex (DLPFC) in Major Depression: A Proof-of-Principle EEG-TMS Study. Biosystems and Biorobotics, 2019, , 1080-1083.	0.2	0
50	Brain-State Dependent Stimulation in Human Motor Cortex for Plasticity Induction Using EEG-TMS. Biosystems and Biorobotics, 2019, , 1057-1060.	0.2	0
51	Phase-coupled EEG sources predict motor cortex excitability probed with TMS. Brain Stimulation, 2021, 14, 1597.	0.7	0
52	Bihemispheric motor oscillatory network states determine cortical responses to transcranial magnetic stimulation. Brain Stimulation, 2021, 14, 1675.	0.7	0
53	Individualized decoding of cortical excitability states using single-trial TMS responses analyzed by machine learning. Brain Stimulation, 2021, 14, 1751.	0.7	0