Cong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/684034/publications.pdf

Version: 2024-02-01

250 papers

7,832 citations

47006 47 h-index 78 g-index

251 all docs

251 docs citations

times ranked

251

8750 citing authors

#	Article	IF	CITATIONS
1	Application of high-pressure technology in exploring mechanical properties of high-entropy alloys. Tungsten, 2023, 5, 50-66.	4.8	6
2	Spatial–Temporal Prediction of Vegetation Index With Deep Recurrent Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	5
3	Emerging of two-dimensional materials in novel memristor. Frontiers of Physics, 2022, 17, 1.	5.0	37
4	Enhanced thermal stability of Mo film with low infrared emissivity by a TiN barrier layer. Applied Surface Science, 2022, 571, 151368.	6.1	10
5	Fair sharing of network resources among workflow ensembles. Cluster Computing, 2022, 25, 2873-2891.	5.0	1
6	Strain regulated interlayer coupling in WSe ₂ /WS ₂ heterobilayer. Nanotechnology, 2022, 33, 085705.	2.6	5
7	Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42, 101372.	11.9	21
8	Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. Sensors, 2022, 22, 1014.	3.8	4
9	Optical Performance, Thermal Stability, and Failure Analysis of the WN _{<i>x</i>} -Si ₃ N ₄ Multilayer Solar Selective Absorbing Coatings. ACS Applied Energy Materials, 2022, 5, 1883-1893.	5.1	7
10	Easternâ∈Pacific and Centralâ∈Pacific Types of ENSO Elicit Diverse Responses of Vegetation in the West Pacific Region. Geophysical Research Letters, 2022, 49, .	4.0	1
11	Room-temperature third-order nonlinear Hall effect in Weyl semimetal TalrTe4. National Science Review, 2022, 9, .	9.5	14
12	A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters. Sensors, 2022, 22, 1313.	3.8	1
13	Anisotropic Properties of Tellurium Nanoflakes Probed by Polarized Raman and Transient Absorption Microscopy: Implications for Polarization-Sensitive Applications. ACS Applied Nano Materials, 2022, 5, 1767-1774.	5.0	9
14	Effect of thermal stress on non-collinear antiferromagnetic phase transitions in antiperovskite Mn3GaN compounds with Mn3SbN inclusions. Ceramics International, 2022, 48, 15200-15206.	4.8	6
15	Modeling on Energy-Efficiency Computation Offloading Using Probabilistic Action Generating. IEEE Internet of Things Journal, 2022, 9, 20681-20692.	8.7	3
16	Divergent Performances of Vegetation Indices in Extracting Photosynthetic Phenology for Northern Deciduous Broadleaf Forests. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	10
17	Solving Virtual Network Mapping Fast by Combining Neural Network and MCTS. , 2022, , .		1
18	A single-player Monte Carlo tree search method combined with node importance for virtual network embedding. Annales Des Telecommunications/Annals of Telecommunications, 2021, 76, 297-312.	2.5	1

#	Article	lF	Citations
19	MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Science China Materials, 2021, 64, 259-265.	6.3	40
20	An integrated approach for robotic Sit-To-Stand assistance: Control framework design and human intention recognition. Control Engineering Practice, 2021, 107, 104680.	5.5	11
21	Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application. Frontiers of Physics, 2021, 16, 1.	5.0	26
22	First-principles study of the structural, electronic, and magnetic properties of Mn-doped Ni3XN(X=Al,) Tj ETQq0 (0 0 _{1.9} BT /C	Overlock 10 Tf
23	Enhancement of the VIS-NIR absorption in a sulfurated-high-entropy film. Materials Advances, 2021, 2, 6411-6417.	5.4	0
24	MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small, 2021, 17, e2006054.	10.0	119
25	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446. Minority-spin conduction in ferromagnetic <mml:math< td=""><td>21.0</td><td>58</td></mml:math<>	21.0	58
26	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml:mathvariant="normal">C<mml:mi></mml:mi></mml:mathvariant="normal"></mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml:< td=""><td>3.2</td><td>5</td></mml:<></mml:msub></mml:mrow></mml:math>	3.2	5
27	Physical Review B, 2021, 103, . Design of negative/nearly zero thermal expansion behavior over a wide temperature range by multi-phase composite. Materials and Design, 2021, 203, 109591.	7.0	18
28	Mining Workflows for Anomalous Data Transfers. , 2021, , .		8
29	Broadband and ultrafast all-optical switching based on transition metal carbide. Nanophotonics, 2021, 10, 2617-2623.	6.0	9
30	Improved Dielectric Properties and Grain Boundary Effect of Phenanthrene Under High Pressure. Frontiers in Physics, 2021, 9, .	2.1	2
31	Wafer-Scale Fabrication and Assembly Method of Multichannel Microelectrode Arrays for ECoG Application. Electronics (Switzerland), 2021, 10, 316.	3.1	1
32	Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials. Electronics (Switzerland), 2021, 10, 3057.	3.1	8
33	A Q-learning-based approach for virtual network embedding in data center. Neural Computing and Applications, 2020, 32, 1995-2004.	5.6	26
34	Broadband and Wide-Temperature-Range Thermal Emitter with Super-Hydrophobicity Based on Oxidized High-Entropy Film. ACS Applied Materials & Interfaces, 2020, 12, 4123-4128.	8.0	12
35	Adjustable uniaxial zero thermal expansion and zero linear compressibility in unique hybrid semiconductors: the role of the organic chain. Dalton Transactions, 2020, 49, 719-728.	3.3	16
36	Synthesis of BiOF/TiO ₂ Heterostructures and Their Enhanced Visibleâ€Light Photocatalytic Activity. European Journal of Inorganic Chemistry, 2020, 2020, 253-260.	2.0	6

#	Article	IF	CITATIONS
37	Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochimica Acta, 2020, 332, 135504.	5.2	52
38	Midâ€Infrared Photonics Using 2D Materials: Status and Challenges. Laser and Photonics Reviews, 2020, 14, 1900098.	8.7	106
39	Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins. Journal of Agricultural and Food Chemistry, 2020, 68, 1136-1146.	5.2	35
40	Strainâ€Induced Bandâ€Gap Tuning of 2Dâ€SnSSe Flakes for Application in Flexible Sensors. Advanced Materials Technologies, 2020, 5, 1900853.	5.8	21
41	Modeling on virtual network embedding using reinforcement learning. Concurrency Computation Practice and Experience, 2020, 32, e6020.	2.2	7
42	Improvement of thermal stability of ZrSiON based solar selective absorbing coating. Journal of Materiomics, 2020, 6, 760-767.	5.7	12
43	Logical Peering for Interdomain Networking on Testbeds. , 2020, , .		2
44	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	27.0	82
45	Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications. Advanced Functional Materials, 2020, 30, 2003301.	14.9	93
46	A Novel Sentence Embedding Based Topic Detection Method for Microblogs. IEEE Access, 2020, 8, 202980-202992.	4.2	4
47	Handling crowdsourced data using state space discretization for robot learning and synthesizing physical skills. International Journal of Intelligent Robotics and Applications, 2020, 4, 390-402.	2.8	2
48	Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1371-1378.	4.9	8
49	Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics. Nano-Micro Letters, 2020, 12, 106.	27.0	89
50	Graphdiyneâ€Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900367.	8.7	99
51	Negative thermal expansion, magnetic and electronic transport properties in antiperovskite compounds Mn3Ga1-xAgxN (0Ââ‰ÂxÂâ‰Â1.0). Journal of Magnetism and Magnetic Materials, 2020, 514, 1671	137. ³	4
52	Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coordination Chemistry Reviews, 2020, 410, 213218.	18.8	74
53	Allâ€Optical Control of Microfiber Knot Resonator Based on 2D Ti ₂ CT <i>_x</i> MXene. Advanced Optical Materials, 2020, 8, 1900977.	7.3	39
54	High-performance optoelectronic memory based on bilayer MoS ₂ grown by Au catalyst. Journal of Materials Chemistry C, 2020, 8, 2664-2668.	5 . 5	9

#	Article	IF	CITATIONS
55	2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science, 2020, 7, 2000058.	11.2	215
56	Discovery of negative thermal expansion with giant thermal hysteresis in Fe3NiBx. Scripta Materialia, 2020, 183, 149-152.	5.2	4
57	Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 2020, 8, 78.	7.0	242
58	An On-Demand Weather Avoidance System for Small Aircraft Flight Path Routing. Lecture Notes in Computer Science, 2020, , 311-319.	1.3	3
59	Application Aware Software Defined Flows of Workflow Ensembles. , 2020, , .		1
60	Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chemistry, 2019, 271, 266-273.	8.2	128
61	Black phosphorene exhibiting negative thermal expansion and negative linear compressibility. Journal of Physics Condensed Matter, 2019, 31, 465003.	1.8	9
62	SignRank: A Novel Random Walking Based Ranking Algorithm in Signed Networks. Wireless Communications and Mobile Computing, 2019, 2019, 1-8.	1.2	5
63	Controlling Chiral Spin States of a Triangularâ€Lattice Magnet by Cooling in a Magnetic Field. Advanced Functional Materials, 2019, 29, 1900947.	14.9	4
64	A graphene P–N junction induced by single-gate control of dielectric structures. Journal of Materials Chemistry C, 2019, 7, 8796-8802.	5.5	6
65	Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews, 2019, 6, .	11.3	143
66	Giant Negative Thermal Expansion in Antiferromagnetic <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cr</mml:mi><mml:mi>As</mml:mi></mml:mrow></mml:math> -Based Compounds. Physical Review Applied, 2019, 12, .	3.8	9
67	A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. Journal of Materials Chemistry C, 2019, 7, 871-878.	5.5	67
68	An Allâ€Optical, Actively Qâ€Switched Fiber Laser by an Antimoneneâ€Based Optical Modulator. Laser and Photonics Reviews, 2019, 13, 1800313.	8.7	122
69	Perseverance of direct bandgap in multilayer 2D PbI ₂ under an experimental strain up to 7.69%. 2D Materials, 2019, 6, 025014.	4.4	20
70	A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors. RSC Advances, 2019, 9, 14352-14359.	3.6	7
71	High performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation. Electrochimica Acta, 2019, 318, 644-650.	5.2	43
72	Double Resonance Raman Scattering in Single-Layer MoSe ₂ under Moderate Pressure. Chinese Physics Letters, 2019, 36, 048201.	3.3	8

#	Article	IF	Citations
73	MXene Ti ₃ C ₂ T <i>_x</i> : A Promising Photothermal Conversion Material and Application in Allâ€Optical Modulation and Allâ€Optical Information Loading. Advanced Optical Materials, 2019, 7, 1900060.	7.3	115
74	Phenology Dynamics of Dryland Ecosystems Along the North Australian Tropical Transect Revealed by Satellite Solarâ€Induced Chlorophyll Fluorescence. Geophysical Research Letters, 2019, 46, 5294-5302.	4.0	51
75	Fully-dense Mn3Zn0.7Ge0.3N /Al composites with zero thermal expansion behavior around room temperature. Materialia, 2019, 6, 100289.	2.7	23
76	COMET: A Distributed Metadata Service for Federated Cloud Infrastructures. , 2019, , .		2
77	Sustainable Cloud Encoding for Adaptive Bitrate Streaming over CDNs. , 2019, , .		2
78	Training Classifiers to Identify TCP Signatures in Scientific Workflows., 2019,,.		5
79	Toward a Dynamic Network-Centric Distributed Cloud Platform for Scientific Workflows: A Case Study for Adaptive Weather Sensing. , 2019, , .		15
80	COMET: Distributed Metadata Service for Multi-cloud Experiments. , 2019, , .		0
81	Controllable nearly zero thermal expansion behavior in Mn3Zn1â^'xCrxN (0†â‰â€ x†â‰â€ 0.20) compounds Scripta Materialia, 2019, 162, 108-111.	^{S.} 5.2	8
82	Topology-Oriented Virtual Network Embedding Approach for Data Centers. IEEE Access, 2019, 7, 2429-2438.	4.2	12
83	Energy Efficient Data Collection in Large-Scale Internet of Things via Computation Offloading. IEEE Internet of Things Journal, 2019, 6, 4176-4187.	8.7	30
84	Facile access to shape-controlled growth of WS ₂ monolayer via environment-friendly method. 2D Materials, 2019, 6, 015007.	4.4	18
85	An Immunization Framework for Social Networks Through Big Data Based Influence Modeling. IEEE Transactions on Dependable and Secure Computing, 2019, 16, 984-995. Giant zero-field cooling exchange-bias-like behavior in antiperovskite <mml:math< td=""><td>5.4</td><td>32</td></mml:math<>	5.4	32
86	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">M<mml:msub><mml:mi mathvariant="normal">n<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">C<mml:misub><mml:mi< td=""><td>2.4</td><td>3</td></mml:mi<></mml:misub></mml:mi </mml:mi </mml:mrow>	2.4	3
87	xmlhs:mml="http://www.w3:org/1998/Math/MathMLib:cmml:mtowx <mml:mi mml:mrow=""><mml:mi mathvariant="normal">M</mml:mi><mml:msub><mml:mi mathvariant="normal">n</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">G</mml:mi><mml:mi><mml:msub><mml:mi< td=""><td>3.2</td><td>20</td></mml:mi<></mml:msub></mml:mi></mml:mi>	3.2	20
88	mathvariant="normal">a <td>nl:mi>2.6</td> <td>ml:mrow><</td>	nl:mi>2.6	ml:mrow><
89	Effects of Ni substitution on magnetism and thermal expansion of antiperovskite Mn3Ga1-xNixN (0â€-â‰â€-xâ€-â‰â€-1.0). Ceramics International, 2018, 44, 9574-9580.	4.8	6
90	Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic LO2â€⁻cells. Food and Chemical Toxicology, 2018, 116, 335-345.	3.6	41

#	Article	IF	Citations
91	Beam steering performance of compressed Luneburg lens based on transformation optics. Results in Physics, 2018, 9, 570-575.	4.1	20
92	The structure, magnetism and electronic transport properties of Mn3Sn1-Zn C(x=0, 0.1, 0.2, 0.3, 0.4, 0.5). Journal of Alloys and Compounds, 2018, 739, 934-938.	5 . 5	5
93	Amorphous phase stability of NbTiAlSiN X high-entropy films. Rare Metals, 2018, 37, 682-689.	7.1	37
94	Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food and Function, 2018, 9, 426-439.	4.6	104
95	Physicochemical characterisation and αâ€nmylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions. International Journal of Food Science and Technology, 2018, 53, 423-429.	2.7	35
96	Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, $\hat{l}\pm$ -amylase and $\hat{l}\pm$ -glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Research International, 2018, 103, 280-288.	6.2	138
97	Phase separation and zero thermal expansion in antiperovskite Mn3Zn0.77Mn0.19N0.94: An in situ neutron diffraction investigation. Scripta Materialia, 2018, 146, 18-21.	5.2	4
98	Negative/zero thermal expansion in black phosphorus nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 28726-28731.	2.8	11
99	The Future of Multi-Clouds: A Survey of Essential Architectural Elements. , 2018, , .		8
100	High-Throughput Screening Solar-Thermal Conversion Films in a Pseudobinary (Cr, Fe, V)–(Ta, W) System. ACS Combinatorial Science, 2018, 20, 602-610.	3.8	29
101	Energy-agile design for parallel HPC applications. Sustainable Computing: Informatics and Systems, 2018, 19, 123-134.	2.2	1
102	The influence of combination of the first-order and second-order phase transitions on magnetocaloric effects in Mn3Cu1-xFexN. Solid State Communications, 2018, 282, 33-37.	1.9	3
103	Toward live inter-domain network services on the ExoGENI testbed. , 2018, , .		6
104	Unusual Electrical Transport Driven by the Competition between Antiferromagnetism and Ferromagnetism in Antiperovskite Mn3Zn1â^2xCoxN. Materials, 2018, 11, 286.	2.9	5
105	Local Joule Heating Mimicking Electroresistance‣ike Behavior in Antiperovskite Mn ₃ GaC. Advanced Electronic Materials, 2018, 4, 1800028.	5.1	2
106	Preparation, characterization of polysaccharides fractions from Inonotus obliquus and their effects on α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic LO2 cells. Journal of Functional Foods, 2018, 48, 179-189.	3.4	26
107	Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites. Frontiers in Chemistry, 2018, 6, 15.	3 . 6	20
108	Virtual network embedding with preâ€transformation and incentive convergence mechanism. Concurrency Computation Practice and Experience, 2017, 29, e3947.	2.2	6

#	Article	IF	CITATIONS
109	Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydrate Polymers, 2017, 164, 370-378.	10.2	114
110	Tunable thermal expansion in framework materials through redox intercalation. Nature Communications, 2017, 8, 14441.	12.8	95
111	Rectifying Characteristics and Semiconductor–Metal Transition Induced by Interfacial Potential in the Mn3CuN/n-Si Intermetallic Heterojunction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12592-12600.	8.0	2
112	Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO 2 solar selective absorbing coating. Solar Energy Materials and Solar Cells, 2017, 167, 178-183.	6.2	59
113	Estimation of Surface Upward Longwave Radiation Using a Direct Physical Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4412-4426.	6.3	27
114	High-performance and high-reliability SOT-6 packaged diplexer based on advanced IPD fabrication techniques. Solid-State Electronics, 2017, 134, 9-18.	1.4	10
115	Efficient visible-light photocatalysts by constructing dispersive energy band with anisotropic p and s-p hybridization states. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 93-100.	5.9	28
116	Correlation between Uniaxial Negative Thermal Expansion and Negative Linear Compressibility in Ag ₃ [Co(CN) ₆]. Journal of Physical Chemistry C, 2017, 121, 333-341.	3.1	28
117	Intercalating copper into layered TaS ₂ van der Waals gaps. RSC Advances, 2017, 7, 46699-46703.	3.6	7
118	Tunable negative thermal expansion and structural evolution in antiperovskite $Mn < sub > 3 < sub > Ga < sub > 1 and structural evolution in antiperovskite Mn < sub > 3 < sub > Ga < sub > 1 and sub > 3 < sub > Ga < sub > 3 and su$	3.8	19
119	Large spin-orbit splitting in the conduction band of halogen (F, Ci, Br, and I) doped monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:mn>2<mml:mn></mml:mn></mml:mn></mml:mrow></mml:math> with	3.2	38
120	Design and Analysis of QoE-Aware Quality Adaptation for DASH. ACM Transactions on Multimedia Computing, Communications and Applications, 2017, 13, 1-24.	4.3	8
121	Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN) ₂] ₂ . Inorganic Chemistry, 2017, 56, 15101-15109.	4.0	25
122	The investigation of thermal stability of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coating. Solar Energy Materials and Solar Cells, 2017, 171, 253-257.	6.2	52
123	Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe ₂ /n-MoS ₂ van der Waals heterojunctions. Nanoscale, 2017, 9, 10733-10740.	5.6	75
124	Tuning of reflectance transition position of Al-AlN cermet solar selective absorbing coating by simulating. Infrared Physics and Technology, 2017, 80, 65-70.	2.9	11
125	Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Frontiers in Pharmacology, 2017, 08, 74.	3.5	85
126	Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers, 2017, 9, 689.	4.5	110

#	Article	IF	CITATIONS
127	Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index. Sensors, 2017, 17, 1982.	3.8	41
128	High-Sensitivity and Low-Hysteresis Porous MIMType Capacitive Humidity Sensor Using Functional Polymer Mixed with TiO2 Microparticles. Sensors, 2017, 17, 0284.	3.8	63
129	Modelling of double air-bridged structured inductor implemented by a GaAs integrated passive device manufacturing process. Semiconductor Science and Technology, 2017, 32, 055002.	2.0	2
130	Nano-Crystallization of High-Entropy Amorphous NbTiAlSiWxNy Films Prepared by Magnetron Sputtering. Entropy, 2016, 18, 226.	2.2	70
131	Baromagnetic Effect in Antiperovskite Mn ₃ Ga _{0.95} N _{0.94} by Neutron Powder Diffraction Analysis. Advanced Materials, 2016, 28, 3761-3767.	21.0	59
132	SQUAD., 2016,,.		48
133	Studies on CsxWO3/BiOCl composite as a novel visible light droven photocatalyst. Journal of Materiomics, 2016, 2, 338-343.	5.7	19
134	Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1â^²xN. Applied Physics Letters, 2016, 108, .	3.3	18
135	Communities Detection Algorithm Based on General Stochastic Block Model in Mobile Social Networks. , 2016, , .		2
136	Competition between ferromagnetic and antiferromagnetic interactions by Cr doping at Mn sites in antiperovskite Mn 3a~x Cr x ZnN (0a% x a%0.5) compounds. Physica B: Condensed Matter, 2016, 488, 19-23.	2.7	3
137	Effects of Cr-doping on the electronic transport properties in antiperovskite nitrides Mn3â^'xCrxZnN (0â‰xâ‰0.5). Physica B: Condensed Matter, 2016, 491, 59-64.	2.7	1
138	Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl) Tj ETQq0 0 0 r Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 105-113.	gBT /Over 3.9	lock 10 Tf 50 42
139	Genome sequence of <i>Candida versatilis</i> and comparative analysis with other yeast. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1131-1138.	3.0	8
140	Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe ₂ /WS ₂ p–n heterojunctions. Physical Chemistry Chemical Physics, 2016, 18, 27750-27753.	2.8	30
141	Molecular beam epitaxy growth and optical properties of single crystal Zn ₃ N ₂ films. Semiconductor Science and Technology, 2016, 31, 10LT01.	2.0	14
142	Ball milling improves extractability and antioxidant properties of the active constituents of mushroom <i>Inonotus obliquus</i> powders. International Journal of Food Science and Technology, 2016, 51, 2193-2200.	2.7	18
143	Investigation on low thermal emittance of Al films deposited by magnetron sputtering. Infrared Physics and Technology, 2016, 75, 133-138.	2.9	9
144	Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS ₂ p–n vdW Heterostructure. ACS Applied Materials & Interfaces, 2016, 8, 2533-2539.	8.0	160

#	Article	IF	Citations
145	Effects of substrates, film thickness and temperature on thermal emittance of Mo/substrate deposited by magnetron sputtering. Vacuum, 2016, 128, 73-79.	3.5	24
146	Synthesis of atomically thin GaSe wrinkles for strain sensors. Frontiers of Physics, 2016, 11, 1.	5.0	15
147	Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study. Materials Chemistry and Physics, 2016, 175, 138-145.	4.0	28
148	Enhancing light emission efficiency without color change in post-transition metal chalcogenides. Nanoscale, 2016, 8, 5820-5825.	5.6	13
149	Effect of Cu doping on structural and magnetic properties of antiperovskite Mn3Ni(Cu)N thin films. Journal of Alloys and Compounds, 2015, 647, 35-40.	5.5	4
150	Firstâ€Principles Study of Sc _{1â^'x} Ti _x F ₃ (<i>x</i> Ââ‰Â0.375): Negative Thermal Expansion, Phase Transition, and Compressibility. Journal of the American Ceramic Society, 2015, 98, 2852-2857.	3.8	16
151	A Novel Method for Virtual Network Embedding with Incentive Convergence Mechanism. , 2015, , .		2
152	Fabrication-resolution enhancement method based on low-energy multiple exposures. Optics Express, 2015, 23, 29353.	3.4	3
153	Optimizing parallel HPC applications for green energy sources. , 2015, , .		O
154	Investigation of $\hat{1}^3 \hat{1} \in \mathbb{Z}$ -Fe4N thin films deposited on Si(1 0 0) and GaAs(1 0 0) substrates by facing target magnetron sputtering. Journal of Crystal Growth, 2015, 426, 117-122.	1.5	7
155	The evolution of magnetic transitions, negative thermal expansion and unusual electronic transport properties in Mn3AgxMnyN. Solid State Communications, 2015, 222, 37-41.	1.9	10
156	A load balancing approach for adaptive bitrate streaming in Information Centric networks., 2015,,.		4
157	Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings. Solar Energy Materials and Solar Cells, 2015, 134, 373-380.	6.2	42
158	VHub: Single-stage virtual network mapping through hub location. Computer Networks, 2015, 77, 169-180.	5.1	21
159	Tuning the Optical, Magnetic, and Electrical Properties of ReSe ₂ by Nanoscale Strain Engineering. Nano Letters, 2015, 15, 1660-1666.	9.1	363
160	A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes. Analytical Methods, 2015, 7, 838-841.	2.7	26
161	Invar-like Behavior of Antiperovskite Mn _{3+<i>x</i>} Ni _{1â€"<i>x</i>} N Compounds. Chemistry of Materials, 2015, 27, 2495-2501.	6.7	77
162	The magnetism and electronic transport properties of Mn3Sn1Si C. Journal of Magnetism and Magnetic Materials, 2015, 391, 22-25.	2.3	2

#	Article	IF	Citations
163	Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating. Solar Energy, 2015, 119, 18-28.	6.1	26
164	Doping Effect of Co at Ag Sites in Antiperovskite Mn 3 AgN Compounds. Chinese Physics Letters, 2015, 32, 047501.	3.3	4
165	Structural and magnetic properties of antiperovskite Mn3NiNx thin films. Materials Letters, 2015, 152, 213-216.	2.6	1
166	Metal fluorides, a new family of negative thermal expansion materials. Journal of Materiomics, 2015, 1, 106-112.	5.7	14
167	Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1â^'xCuxN compounds. Journal of Applied Physics, 2015, 117, 213915.	2.5	21
168	Frustrated Triangular Magnetic Structures of Mn ₃ ZnN: Applications in Thermal Expansion. Journal of Physical Chemistry C, 2015, 119, 24983-24990.	3.1	23
169	Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn 3 InC. Chinese Physics Letters, 2015, 32, 067503.	3.3	4
170	Suppression of interface roughness between BaTiO3 film and substrate by Si3N4 buffer layer regarding aerosol deposition process. Journal of Alloys and Compounds, 2015, 653, 69-76.	5.5	4
171	Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system. Solid-State Electronics, 2015, 114, 121-130.	1.4	2
172	Preparation and photocatalytic properties of BiOCl/Bi2MoO6 composite photocatalyst. Materials Letters, 2015, 139, 149-152.	2.6	46
173	Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn3SbN. Journal of Applied Physics, 2014, 115, 043509.	2.5	10
174	Controllable growth of BiOCl film with high percentage of exposed {001} facets. Applied Surface Science, 2014, 289, 266-273.	6.1	39
175	Large improvement of visible-light-driven photocatalytic property in AgCl nanoparticles modified black BiOCl microsphere. Materials Letters, 2014, 127, 28-31.	2.6	27
176	A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application. Solar Energy Materials and Solar Cells, 2014, 127, 143-146.	6.2	45
177	<i><scp>T</scp>orulopsis versatilis</i> strains with increased salt tolerance carry mutations in the glycerol transporter gene <i><scp>FPS</scp>1</i> . International Journal of Food Science and Technology, 2014, 49, 673-678.	2.7	1
178	Preparation and spectral properties of solar selective absorbing MoSi∢sub>2⟨/sub>–Al⟨sub>2⟨/sub>O⟨sub>3⟨/sub> coating. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1519-1524.	1.8	14
179	Relationship between Spin Ordering, Entropy, and Anomalous Lattice Variation in Mn ₃ Sn _{1â^'ε} Si _ε C _{1â^'Î′} Compounds. Inorganic Chemistry, 2014, 53, 2317-2324.	4.0	20
180	Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96. Acta Materialia, 2014, 74, 58-65.	7.9	46

#	Article	IF	CITATIONS
181	Effects of the LMVF and HMVF absorption layer thickness and metal volume fraction on optical properties of the MoSi2–Al2O3 solar selective absorbing coating. Vacuum, 2014, 104, 116-121.	3.5	15
182	Visible Light Photocatalytic Properties and Thermochromic Phenomena ofÂNanostructured BiOCl Microspheres. Journal of Materials Science and Technology, 2014, 30, 1130-1133.	10.7	14
183	Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature. Scripta Materialia, 2014, 84-85, 19-22.	5.2	39
184	Lease Data Center in the Light of Network Resources: An Economic Model. , 2014, , .		19
185	Research on Salt-tolerant Gene GPD1 in Zygosaccharomyces rouxii. Lecture Notes in Electrical Engineering, 2014, , 1157-1163.	0.4	1
186	The Unusual Resistivity Behavior and Correlated Magnetic Properties of Antiperovskite Mn $<$ SUB $>3<$ SUB $>Ag<$ SUB >1 â $^{\circ}$ $<$ I $>×(I><$ SUB $><$ I $>M<$ SUB $>x<$ SUB $>N<$ II $>$ ($<$ I $>M<$ II $>=$ Sn, Zn) Compounds. Science of Advanced Materials, 2014, 6, 1394-1398.	0.7	3
187	Effect of Gene FPS1 on Accumulation of Glycerol in Zygosaccharomyces rouxii. Lecture Notes in Electrical Engineering, 2014, , 251-257.	0.4	0
188	On the Feasibility of DASH Streaming in the Cloud. , 2014, , .		1
189	Analysis of Salt-Tolerance Genes in Zygosaccharomyces rouxii. Applied Biochemistry and Biotechnology, 2013, 170, 1417-1425.	2.9	15
190	Comparative analysis of saltâ€ŧolerant gene <i><scp>HOG1</scp></i> in a <i>Zygosaccharomyces rouxii</i> mutant strain and its parent strain. Journal of the Science of Food and Agriculture, 2013, 93, 2765-2770.	3.5	10
191	Improvement of thermal stability in the solar selective absorbing Mo–Al2O3 coating. Solar Energy Materials and Solar Cells, 2013, 109, 204-208.	6.2	63
192	The impact of thermal annealing on the morphology of sputter deposited platinum clusters into anodic aluminum oxide pores. Applied Surface Science, 2013, 266, 400-404.	6.1	6
193	Spectral properties and thermal stability of solar selective absorbing AlNi–Al2O3 cermet coating. Solar Energy, 2013, 96, 113-118.	6.1	58
194	Performance of DASH and WebRTC Video Services for Mobile Users. , 2013, , .		25
195	The effect of Zn vacancies on the physical properties of antiperovskite compounds Mn3ZnxN. Scripta Materialia, 2013, 68, 968-971.	5.2	4
196	GENI WiMAX Performance: Evaluation and Comparison of Two Campus Testbeds., 2013,,.		7
197	Construction of ploidy series of <i>Saccharomyces cerevisiae</i> by the plasmid YCplac33-GHK. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 393-397.	3.0	5
198	Carbon-Induced Ferromagnetism in the Antiferromagnetic Metallic Host Material Mn ₃ ZnN. Inorganic Chemistry, 2013, 52, 800-806.	4.0	19

#	Article	IF	CITATIONS
199	The Spectral Properties and Thermal Stability of AlCr-AlCrON Solar Selective Absorber Coating. Applied Mechanics and Materials, 2013, 423-426, 419-425.	0.2	0
200	Surface activity of antiperovskite manganese nitrides. Journal of Materials Research, 2013, 28, 3245-3251.	2.6	2
201	Magnetic structure and lattice contraction in Mn3NiN. Journal of Applied Physics, 2013, 114, .	2.5	32
202	Lattice and Magnetic and Electronic Transport Properties in Antiperovskite Compounds. Advances in Condensed Matter Physics, 2013, 2013, 1-2.	1.1	2
203	Thermodynamic, Electromagnetic, and Lattice Properties of Antiperovskite Mn _{3} SbN. Advances in Condensed Matter Physics, 2013, 2013, 1-5.	1.1	3
204	Virtual network mapping with traffic matrices. , 2012, , .		14
205	Preparation and Photocatalytic Activity of ZnO/Fe ₂ O ₃ Nanorod Arrays and ZnO/NiO Nanotube Arrays. Chinese Physics Letters, 2012, 29, 037201.	3.3	6
206	Pressure Effects on the Magnetic Phase Transition of Mn $\langle sub \rangle 3 \langle sub \rangle SnC \langle sub \rangle 1a^* \langle i \rangle \langle sub \rangle N \langle sub \rangle \langle i \rangle \langle sub \rangle (\langle i \rangle \rangle \langle sub \rangle (\langle i \rangle \rangle \langle sub \rangle $	3.3	3
207	QoS featured wireless virtualization based on 802.11 hardware. , 2012, , . Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn <mml:math< td=""><td></td><td>0</td></mml:math<>		0
208	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> (Zn, <mml:math) 0="" 10="" 387<="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>Td (xmlns: 3.2</td><td>mml="http:// 145</td></mml:math)>	Td (xmlns: 3.2	mml="http:// 145
209	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /-<mml- Neutron Diffraction Study of Unusual Phase Separation in the Antiperovskite Nitride Mn₃ZnN. Inorganic Chemistry, 2012, 51, 7232-7236.</mml- </mml:mrow </mml:msub>	4.0	62
210	Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1â^'xAgxN antiperovskite compounds. Scripta Materialia, 2012, 67, 173-176.	5.2	28
211	The spectral properties and thermal stability of NbTiON solar selective absorbing coating. Solar Energy Materials and Solar Cells, 2012, 96, 131-136.	6.2	76
212	Ni-doping effect on the magnetic transition and correlated lattice contraction in antiperovskite Mn3ZnN compounds. Solid State Communications, 2012, 152, 446-449.	1.9	9
213	Virtual Network Mapping with Traffic Matrices. , 2011, , .		12
214	Growth of Intricate <scp>ZnO</scp> Nanorod Networks on <scp>αâ€Fe₂O₃</scp> â€Coated <scp>Si</scp> Substrate: Growth Mechanism and Optical Properties. Journal of the American Ceramic Society, 2011, 94, 1992-1994.	3.8	1
215	Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N (A=Ni, Sn)/Cu composites. Scripta Materialia, 2011, 65, 687-690.	5.2	59
216	Structure and properties of ternary manganese nitride Mn3CuNy thin films fabricated by facing target magnetron sputtering. Materials Research Bulletin, 2011, 46, 1022-1027.	5.2	15

#	Article	IF	CITATIONS
217	BiOCl nano/microstructures on substrates: Synthesis and photocatalytic properties. Materials Letters, 2011, 65, 1344-1347.	2.6	64
218	Fabrication and photocatalytic property of ZnO nanorod arrays on Cu2O thin film. Materials Letters, 2011, 65, 2284-2286.	2.6	26
219	Magnetic and electronic transport properties of antiperovskite Mn3Cu(Ge)N thin films. Materials Letters, 2011, 65, 2401-2403.	2.6	2
220	Preparation and properties of antiperovskite Mn3NiN thin film. Materials Letters, 2011, 65, 3447-3449.	2.6	11
221	Enhanced anomalous diffusion of sputtered atoms in nanosized pores. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2112-2116.	2.6	6
222	Magnetic phase transitions of antiperovskite Mn3â^'xFexSnCÂ(0.5â%xâ%1.3). Solid State Communications, 2011, 151, 377-381.	1.9	11
223	Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1â^'xCuxN. Applied Physics Letters, 2011, 99, .	3.3	81
224	Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. CrystEngComm, 2011, 13, 4930.	2.6	69
225	Investigation of antiperovskite Mn3CuNx film prepared by DC reactive magnetron sputtering. Materials Research Bulletin, 2010, 45, 1230-1233.	5. 2	18
226	Synthesis and photocatalytic properties of BiOCl nanowire arrays. Materials Letters, 2010, 64, 115-118.	2.6	157
227	Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound. Scripta Materialia, 2010, 62, 686-689.	5. 2	77
228	Forced volume magnetostriction in Mn3.3Sn0.7C compound at room temperature. Journal of Magnetism and Magnetic Materials, 2010, 322, 3106-3108.	2.3	14
229	Negative Thermal Expansion and Correlated Magnetic and Electrical Properties of Siâ€Doped Mn ₃ GaN Compounds. Journal of the American Ceramic Society, 2010, 93, 650-653.	3.8	55
230	Negative Thermal Expansion and Magnetic Transition in Antiâ€Perovskite Structured Mn ₃ Zn _{1â^²<i>x</i>} Sn <i>_x</i> N Compounds. Journal of the American Ceramic Society, 2010, 93, 2178-2181.	3.8	51
231	Influence of carbon content on the lattice variation, magnetic and electronic transport properties in Mn3SnCx. Applied Physics Letters, 2010, 96, .	3.3	30
232	Lattice, magnetic and electronic transport behaviors of Ge-doped Mn3XC (X=Al, Zn, Ga). Journal of Alloys and Compounds, 2010, 489, 289-292.	5 . 5	28
233	Investigation of Lattice Contraction in Mn ₃ XN(X=Zn, Cu, Sn). Materials Science Forum, 2010, 638-642, 2195-2200.	0.3	6
234	Lattice, magnetic and transport properties in antiperovskite compounds. Solid State Communications, 2009, 149, 1519-1522.	1.9	18

#	Article	IF	Citations
235	Quasi-horizontal GaN nanowire array network grown by sublimation sandwich technique. Applied Surface Science, 2008, 254, 6637-6641.	6.1	7
236	Magnetically tunable spin-polarization of the current through a double quantum dot device. Solid State Communications, 2008, 148, 69-73.	1.9	1
237	Photocatalytic properties of BiOX (X = Cl, Br, and I). Rare Metals, 2008, 27, 243-250.	7.1	297
238	A new all-thin-film electrochromic device using LiBSO as the ion conducting layer. Journal Physics D: Applied Physics, 2008, 41, 115301.	2.8	14
239	Lattice contraction and magnetic and electronic transport properties of Mn3Zn1â^'xGexN. Applied Physics Letters, 2007, 91, .	3.3	131
240	Quantum supercurrent in a quantum dot Aharonov–Bohm interferometer. Solid State Communications, 2007, 144, 37-41.	1.9	6
241	GaN nanorings: Another example of spontaneous polarization-induced nanostructure. Journal of Crystal Growth, 2007, 303, 427-432.	1.5	22
242	Microstructure and Optical Characterization of Magnetron Sputtered NbN Thin Films. Chinese Journal of Aeronautics, 2007, 20, 140-144.	5.3	21
243	Preparation and optical properties of Nb-NbN multilayer films as solar selective absorptive coatings. Rare Metals, 2006, 25, 355-359.	7.1	7
244	Passive temperature compensation package for fiber Bragg grating., 2006,,.		1
245	GaN single crystals grown under moderate nitrogen pressure by a new flux: Ca3N2. Journal of Crystal Growth, 2006, 291, 72-76.	1.5	17
246	Necktie-like ZnO nanobelts grown by a self-catalytic VLS process. Materials Letters, 2006, 60, 3809-3812.	2.6	12
247	Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004, 75, 183-188.	3.5	221
248	Effect of intense pulsed ion beams irradiation on the oxidation behavior of $\hat{l}^3\hat{a}\in^2$ -based superalloy. Nuclear Instruments & Methods in Physics Research B, 2002, 197, 83-93.	1.4	7
249	Investigation of the photoreactivity of nanocrystalline TiO2 thin film by ion-implantation technique. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 242-248.	2.7	21
250	Fully Dense Mn $\langle sub \rangle 3 \langle sub \rangle 2n \langle sub \rangle 0.7 \langle sub \rangle Ge \langle sub \rangle 0.3 \langle sub \rangle N$ /Al Composites with Zero Thermal Expansion Behavior Around Room Temperature. SSRN Electronic Journal, 0, , .	0.4	0