
Matthew R Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6840289/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	6.0	1,141
2	Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews, 2011, 111, 3736-3827.	23.0	1,080
3	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	6.0	1,013
4	DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Materials, 2010, 9, 913-917.	13.3	596
5	Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles. Nano Letters, 2008, 8, 2526-2529.	4.5	380
6	Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354, 874-877.	6.0	204
7	Universal Noble Metal Nanoparticle Seeds Realized Through Iterative Reductive Growth and Oxidative Dissolution Reactions. Journal of the American Chemical Society, 2014, 136, 7603-7606.	6.6	200
8	Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nature Communications, 2015, 6, 10052.	5.8	199
9	Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science, 2018, 359, 669-672.	6.0	195
10	Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nature Nanotechnology, 2012, 7, 24-28.	15.6	158
11	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	11.1	157
12	Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nature Materials, 2015, 14, 833-839.	13.3	154
13	Transmutable nanoparticles with reconfigurable surface ligands. Science, 2016, 351, 579-582.	6.0	150
14	Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2240-2245.	3.3	144
15	Nanoparticle Shape Anisotropy Dictates the Collective Behavior of Surface-Bound Ligands. Journal of the American Chemical Society, 2011, 133, 18865-18869.	6.6	143
16	Establishing the Design Rules for DNAâ€Mediated Programmable Colloidal Crystallization. Angewandte Chemie - International Edition, 2010, 49, 4589-4592.	7.2	139
17	Topotactic Interconversion of Nanoparticle Superlattices. Science, 2013, 341, 1222-1225.	6.0	137
18	The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. Nano Letters, 2017, 17, 414-420.	4.5	120

MATTHEW R JONES

#	Article	IF	CITATIONS
19	Shape-Selective Deposition and Assembly of Anisotropic Nanoparticles. Nano Letters, 2014, 14, 2157-2161.	4.5	101
20	Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics. Nano Letters, 2015, 15, 1012-1017.	4.5	90
21	What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?. Journal of the American Chemical Society, 2015, 137, 3486-3489.	6.6	79
22	The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11717-11725.	3.3	75
23	Imaging the polymerization of multivalent nanoparticles in solution. Nature Communications, 2017, 8, 761.	5.8	70
24	Unraveling Kinetically-Driven Mechanisms of Gold Nanocrystal Shape Transformations Using Graphene Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 5731-5737.	4.5	64
25	Plasmonically Controlled Nucleic Acid Dehybridization with Gold Nanoprisms. ChemPhysChem, 2009, 10, 1461-1465.	1.0	60
26	Bypassing the Limitations of Classical Chemical Purification with DNAâ€Programmable Nanoparticle Recrystallization. Angewandte Chemie - International Edition, 2013, 52, 2886-2891.	7.2	53
27	<i>In Situ</i> Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices. ACS Nano, 2016, 10, 9801-9808.	7.3	49
28	Langmuir Analysis of Nanoparticle Polyvalency in DNAâ€Mediated Adsorption. Angewandte Chemie - International Edition, 2014, 53, 9532-9538.	7.2	36
29	Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. Nano Letters, 2018, 18, 3494-3501.	4.5	35
30	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano, 2020, 14, 10239-10250.	7.3	35
31	New Strategies for Probing Energy Systems with In Situ Liquid-Phase Transmission Electron Microscopy. ACS Energy Letters, 2018, 3, 1269-1278.	8.8	33
32	Tip-Enhanced Multipolar Raman Scattering. Journal of Physical Chemistry Letters, 2020, 11, 2464-2469.	2.1	25
33	Tip-Enhanced Raman Nanospectroscopy of Smooth Spherical Gold Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 1795-1801.	2.1	25
34	Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency. Nano Letters, 2018, 18, 859-864.	4.5	24
35	The role of trace Ag in the synthesis of Au nanorods. Nanoscale, 2019, 11, 11744-11754.	2.8	24
36	Understanding Symmetry Breaking at the Single-Particle Level <i>via</i> the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors. ACS Nano, 2021, 15, 15953-15961.	7.3	23

MATTHEW R JONES

#	Article	IF	CITATIONS
37	Dopant Mediated Assembly of Cu ₂ ZnSnS ₄ Nanorods into Atomically Coupled 2D Sheets in Solution. Nano Letters, 2017, 17, 3421-3428.	4.5	19
38	Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Letters, 2017, 17, 5830-5835.	4.5	19
39	Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires. Physical Review Letters, 2022, 128, 085901.	2.9	16
40	Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. Npj Computational Materials, 2022, 8, .	3.5	15
41	Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles. Chemical Physics Letters, 2017, 683, 389-392.	1.2	14
42	Synthesis and Characterization of a Plasmonic–Semiconductor Composite Containing Rationally Designed, Optically Tunable Gold Nanorod Dimers and Anatase TiO ₂ . Chemistry of Materials, 2014, 26, 3818-3824.	3.2	12
43	Mechanical Reshaping of Inorganic Nanostructures with Weak Nanoscale Forces. Nano Letters, 2021, 21, 130-135.	4.5	9
44	Colloidal interactions get patchy and directional. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15382-15384.	3.3	8
45	Measurement Challenges in Dynamic and Nonequilibrium Nanoscale Systems. Analytical Chemistry, 2019, 91, 13324-13336.	3.2	6
46	Microscopic mechanisms of deformation transfer in high dynamic range branched nanoparticle deformation sensors. Nature Communications, 2018, 9, 1155.	5.8	4
47	Using Graphene Liquid Cell Electron Microscopy to Elucidate Nanocrystal Etching Mechanisms. Microscopy and Microanalysis, 2018, 24, 246-247.	0.2	0