Yves V Brun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6840237/publications.pdf

Version: 2024-02-01

30070 42399 11,051 160 54 92 citations h-index g-index papers 180 180 180 8646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Type IV Pili: dynamic bacterial nanomachines. FEMS Microbiology Reviews, 2022, 46, .	8.6	26
2	Nitric oxide stimulates type IV MSHA pilus retraction in $\langle i \rangle$ Vibrio cholerae $\langle i \rangle$ via activation of the phosphodiesterase CdpA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
3	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
4	Competence pili in <i>Streptococcus pneumoniae</i> are highly dynamic structures that retract to promote DNA uptake. Molecular Microbiology, 2021, 116, 381-396.	2.5	28
5	A polysaccharide deacetylase enhances bacterial adhesion in high-ionic-strength environments. IScience, 2021, 24, 103071.	4.1	10
6	Unipolar Peptidoglycan Synthesis in the <i>Rhizobiales</i> Requires an Essential Class A Penicillin-Binding Protein. MBio, 2021, 12, e0234621.	4.1	21
7	Bacterial chromosome segregation: New insights into non-binary replication and division. Current Biology, 2021, 31, R1044-R1046.	3.9	O
8	In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer. Cell, 2020, 180, 348-358.e15.	28.9	79
9	A Division of Labor in the Recruitment and Topological Organization of a Bacterial Morphogenic Complex. Current Biology, 2020, 30, 3908-3922.e4.	3.9	15
10	Surface sensing stimulates cellular differentiation in <i>Caulobacter crescentus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17984-17991.	7.1	23
11	c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nature Communications, 2020, 11, 1549.	12.8	70
12	Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature, 2020, 578, 582-587.	27.8	177
13	Special Sections for the 8th Biennial International Conference on the Biology of Vibrios. Journal of Bacteriology, 2020, 202, .	2.2	O
14	Special Sections for the 8th Biennial International Conference on the Biology of Vibrios. Journal of Bacteriology, 2020, 202, .	2,2	0
15	A Multiprotein Complex Anchors Adhesive Holdfast at the Outer Membrane of Caulobacter crescentus. Journal of Bacteriology, 2019, 201, .	2.2	13
16	The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. Journal of Bacteriology, 2019, 201, .	2.2	19
17	Origin of a Core Bacterial Gene via Co-option and Detoxification of a Phage Lysin. Current Biology, 2019, 29, 1634-1646.e6.	3.9	16
18	Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nature Protocols, 2019, 14, 1803-1819.	12.0	61

#	Article	IF	CITATIONS
19	Flagellar Mutants Have Reduced Pilus Synthesis in <i>Caulobacter crescentus</i> Bacteriology, 2019, 201, .	2.2	17
20	Comparative Analysis of Ionic Strength Tolerance between Freshwater and Marine <i>Caulobacterales</i> Adhesins. Journal of Bacteriology, 2019, 201, .	2.2	15
21	Fluorogenic d-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nature Chemistry, 2019, 11, 335-341.	13.6	72
22	Mechanisms of Incorporation for <scp>D</scp> -Amino Acid Probes That Target Peptidoglycan Biosynthesis. ACS Chemical Biology, 2019, 14, 2745-2756.	3.4	101
23	A bifunctional ATPase drives tad pilus extension and retraction. Science Advances, 2019, 5, eaay2591.	10.3	39
24	Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. MBio, 2018, 9, .	4.1	29
25	Evolutionary determinants of genome-wide nucleotide composition. Nature Ecology and Evolution, 2018, 2, 237-240.	7.8	126
26	Host-Polarized Cell Growth in Animal Symbionts. Current Biology, 2018, 28, 1039-1051.e5.	3.9	37
27	The Molecular Basis of Noncanonical Bacterial Morphology. Trends in Microbiology, 2018, 26, 191-208.	7.7	53
28	Mutations in Sugar-Nucleotide Synthesis Genes Restore Holdfast Polysaccharide Anchoring to Caulobacter crescentus Holdfast Anchor Mutants. Journal of Bacteriology, 2018, 200, .	2.2	14
29	Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria. MBio, 2018, 9, .	4.1	18
30	The cell wall hydrolase Pmp23 is important for assembly and stability of the division ring in Streptococcus pneumoniae. Scientific Reports, 2018, 8, 7591.	3.3	8
31	Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA. Molecular Microbiology, 2018, 110, 219-238.	2.5	32
32	Bacterial adhesion at the single-cell level. Nature Reviews Microbiology, 2018, 16, 616-627.	28.6	380
33	Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science, 2017, 355, 739-743.	12.6	503
34	Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nature Microbiology, 2017, 2, 17059.	13.3	85
35	Obstruction of pilus retraction stimulates bacterial surface sensing. Science, 2017, 358, 535-538.	12.6	231
36	Peptidoglycan Oâ€acetylation is functionally related to cell wall biosynthesis and cell division in <i>Streptococcus pneumoniae</i> Molecular Microbiology, 2017, 106, 832-846.	2.5	18

#	Article	IF	CITATIONS
37	Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nature Microbiology, 2017, 2, 1648-1657.	13.3	103
38	A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nature Communications, 2017, 8, 1621.	12.8	42
39	Full color palette of fluorescent <scp>d</scp> -amino acids for in situ labeling of bacterial cell walls. Chemical Science, 2017, 8, 6313-6321.	7.4	111
40	Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and \hat{l}^2 -lactam resistance in Escherichia coli. ELife, 2016, 5, .	6.0	137
41	The mechanism of force transmission at bacterial focal adhesion complexes. Nature, 2016, 539, 530-535.	27.8	120
42	Microbel, a tool for high throughput bacterial cell detection and quantitative analysis. Nature Microbiology, 2016, 1, 16077.	13.3	761
43	FtsZ-Dependent Elongation of a Coccoid Bacterium. MBio, 2016, 7, .	4.1	21
44	Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria. Analytical Chemistry, 2016, 88, 8476-8483.	6.5	16
45	Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology. PLoS Biology, 2016, 14, e1002565.	5.6	96
46	D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS. PLoS ONE, 2016, 11, e0151872.	2.5	9
47	Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division. PLoS Pathogens, 2016, 12, e1005590.	4.7	86
48	Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiology Spectrum, 2015, 3, .	3.0	229
49	Draft Genome Sequence of Prosthecomicrobium hirschii ATCC 27832 T. Genome Announcements, 2015, 3, .	0.8	5
50	Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Frontiers in Microbiology, 2015, 6, 580.	3.5	62
51	Anammox Planctomycetes have a peptidoglycan cell wall. Nature Communications, 2015, 6, 6878.	12.8	194
52	Integrated Microfluidic Devices for Studying Aging and Adhesion of Individual Bacteria. Biophysical Journal, 2015, 108, 371a.	0.5	3
53	Mechanosensing: A Regulation Sensation. Current Biology, 2015, 25, R113-R115.	3.9	24
54	Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights. BioEssays, 2015, 37, 413-425.	2.5	18

#	Article	IF	CITATIONS
55	Novel Pseudotaxis Mechanisms Improve Migration of Straight-Swimming Bacterial Mutants Through a Porous Environment. MBio, 2015, 6, e00005.	4.1	20
56	Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. Journal of Bacteriology, 2015, 197, 3472-3485.	2.2	56
57	Cell shape dynamics during the staphylococcal cell cycle. Nature Communications, 2015, 6, 8055.	12.8	208
58	Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells. Analytical Chemistry, 2015, 87, 12032-12039.	6.5	63
59	Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nature Protocols, 2015, 10, 33-52.	12.0	268
60	Cyanobacterial Phylogeny and Development: Questions and Challenges. , 2014, , 49-81.		9
61	Heterocyst Formation in Anabaena. , 2014, , 83-104.		63
62	Morphogenesis and Properties of the Bacterial Spore. , 2014, , 191-218.		30
63	Endospore-Forming Bacteria: an Overview. , 2014, , 131-150.		13
64	The Paleobiologic Record of Cyanobacterial Evolution. , 2014, , 105-129.		5
65	Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division. PLoS Genetics, 2014, 10, e1004275.	3.5	166
66	MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature, 2014, 516, 259-262.	27.8	194
67	<scp>Pbp2x</scp> localizes separately from <scp>Pbp2b</scp> and other peptidoglycan synthesis proteins during later stages of cell division of <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> ià€ <scp>D</scp> 39. Molecular Microbiology, 2014, 94, 21-40.	2.5	88
68	Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature, 2014, 506, 489-493.	27.8	65
69	Identification of essential alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems. Molecular Microbiology, 2014, 93, 713-735.	2.5	79
70	Biological Consequences and Advantages of Asymmetric Bacterial Growth. Annual Review of Microbiology, 2013, 67, 417-435.	7.3	64
71	Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces. BMC Microbiology, 2013, 13, 139.	3.3	16
72	Physiochemical Properties of <i>Caulobacter crescentus</i> Holdfast: A Localized Bacterial Adhesive. Journal of Physical Chemistry B, 2013, 117, 10492-10503.	2.6	51

#	Article	IF	CITATIONS
73	Modes of cell wall growth differentiation in rod-shaped bacteria. Current Opinion in Microbiology, 2013, 16, 731-737.	5.1	37
74	Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nature Communications, 2013, 4, 2856.	12.8	123
75	Effect of a ctrA promoter mutation, causing a reduction in CtrA abundance, on the cell cycle and development of Caulobacter crescentus. BMC Microbiology, 2013, 13, 166.	3.3	7
76	Peptidoglycan transformations during <i><scp>B</scp>acillus subtilis</i> sporulation. Molecular Microbiology, 2013, 88, 673-686.	2.5	109
77	A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus. PLoS Biology, 2013, 11, e1001728.	5.6	41
78	Coâ€ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillinâ€bindingâ€protein. Molecular Microbiology, 2013, 90, 1162-1177.	2.5	27
79	Bypassing the need for subcellular localization of a polysaccharide exportâ€anchor complex by overexpressing its protein subunits. Molecular Microbiology, 2013, 89, 350-371.	2.5	14
80	Physiological role of stalk lengthening in <i>Caulobacter crescentus</i> . Communicative and Integrative Biology, 2013, 6, e24561.	1.4	38
81	The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Molecular Microbiology, 2013, 88, 486-500.	2.5	43
82	Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1697-1701.	7.1	195
83	Functional Characterization of UDP-Glucose:Undecaprenyl-Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus. Journal of Bacteriology, 2012, 194, 2646-2657.	2.2	70
84	General Protein Diffusion Barriers Create Compartments within Bacterial Cells. Cell, 2012, 151, 1270-1282.	28.9	68
85	Inâ€Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent <scp>D</scp> â€Amino Acids. Angewandte Chemie - International Edition, 2012, 51, 12519-12523.	13.8	541
86	Microfluidic Device for Automated Synchronization of Bacterial Cells. Analytical Chemistry, 2012, 84, 8571-8578.	6.5	12
87	Caulobacter crescentus. Current Biology, 2012, 22, R507-R509.	3.9	16
88	Surface contact stimulates the justâ€inâ€time deployment of bacterial adhesins. Molecular Microbiology, 2012, 83, 41-51.	2.5	172
89	The scaffolding and signalling functions of a localization factor impact polar development. Molecular Microbiology, 2012, 84, 712-735.	2.5	33
90	Polarity and the diversity of growth mechanisms in bacteria. Seminars in Cell and Developmental Biology, 2011, 22, 790-798.	5.0	55

#	Article	IF	Citations
91	Complete genome sequence of Hirschia baltica type strain (IFAM 1418T). Standards in Genomic Sciences, 2011, 5, 287-297.	1.5	12
92	Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria. Journal of Bacteriology, 2011, 193, 4567-4568.	2.2	22
93	A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Molecular Microbiology, 2010, 76, 409-427.	2.5	64
94	A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Molecular Microbiology, 2010, 77, 815-829.	2.5	88
95	Protein localization and dynamics within a bacterial organelle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5599-5604.	7.1	31
96	Getting in the Loop: Regulation of Development in <i>Caulobacter crescentus</i> Microbiology and Molecular Biology Reviews, 2010, 74, 13-41.	6.6	223
97	Microchannel-Nanopore Device for Bacterial Chemotaxis Assays. Analytical Chemistry, 2010, 82, 9357-9364.	6.5	16
98	A Novel Effector Protein Modulates Response Regulator Activity without Altering Phosphorylation. Molecular Cell, 2010, 39, 319-320.	9.7	0
99	Characterization of the <i>Caulobacter crescentus</i> Holdfast Polysaccharide Biosynthesis Pathway Reveals Significant Redundancy in the Initiating Glycosyltransferase and Polymerase Steps. Journal of Bacteriology, 2008, 190, 7219-7231.	2.2	76
100	Complex Regulatory Pathways Coordinate Cell-Cycle Progression and Development in Caulobacter crescentus. Advances in Microbial Physiology, 2008, 54, 1-101.	2.4	62
101	Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus. Current Opinion in Microbiology, 2007, 10, 630-637.	5.1	27
102	EGGS: Extraction of Gene Clusters Using Genome Context Based Sequence Matching Techniques. , 2007,		8
103	The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO Journal, 2007, 26, 4694-4708.	7.8	340
104	Out on a limb: how the Caulobacter stalk can boost the study of bacterial cell shape. Molecular Microbiology, 2007, 64, 28-33.	2.5	41
105	A Molecular Beacon Defines Bacterial Cell Asymmetry. Cell, 2006, 124, 891-893.	28.9	11
106	Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus. Molecular Microbiology, 2006, 59, 301-316.	2.5	44
107	Mutations in DivL and CckA Rescue a divJ Null Mutant of Caulobacter crescentus by Reducing the Activity of CtrA. Journal of Bacteriology, 2006, 188, 2473-2482.	2.2	39
108	A nutrient uptake role for bacterial cell envelope extensions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11772-11777.	7.1	98

#	Article	IF	Citations
109	Comparative Genomic Evidence for a Close Relationship between the Dimorphic Prosthecate Bacteria Hyphomonas neptunium and Caulobacter crescentus. Journal of Bacteriology, 2006, 188, 6841-6850.	2.2	57
110	Adhesion of single bacterial cells in the micronewton range. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5764-5768.	7.1	204
111	Caulobacter crescentus Requires RodA and MreB for Stalk Synthesis and Prevention of Ectopic Pole Formation. Journal of Bacteriology, 2005, 187, 544-553.	2.2	70
112	The Elastic Properties of the Caulobacter crescentus Adhesive Holdfast Are Dependent on Oligomers of N -Acetylglucosamine. Journal of Bacteriology, 2005, 187, 257-265.	2.2	66
113	Effects of Tryptic Peptide Esterification in MALDI Mass Spectrometry. Analytical Chemistry, 2005, 77, 4185-4193.	6.5	12
114	A Temperature-Sensitive Mutation in the dnaE Gene of Caulobacter crescentus That Prevents Initiation of DNA Replication but Not Ongoing Elongation of DNA. Journal of Bacteriology, 2004, 186, 1205-1212.	2.2	6
115	Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Molecular Microbiology, 2004, 54, 60-74.	2.5	45
116	Development of Surface Adhesion in Caulobacter crescentus. Journal of Bacteriology, 2004, 186, 1438-1447.	2.2	102
117	The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Molecular Microbiology, 2003, 49, 1671-1683.	2.5	37
118	The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Molecular Microbiology, 2003, 47, 929-941.	2.5	103
119	Identification of Genes Required for Synthesis of the Adhesive Holdfast in Caulobacter crescentus. Journal of Bacteriology, 2003, 185, 1432-1442.	2.2	77
120	Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Current Opinion in Microbiology, 2003, 6, 541-549.	5.1	28
121	Defining Absolute Confidence Limits in the Identification of Caulobacter Proteins by Peptide Mass Mapping. Journal of Proteome Research, 2002, 1, 325-335.	3.7	25
122	Artifacts and unassigned masses encountered in peptide mass mapping. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 363-383.	2.3	67
123	DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus. Molecular Microbiology, 2002, 45, 605-616.	2.5	31
124	Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Molecular Microbiology, 2002, 45, 1029-1041.	2.5	67
125	Global analysis of a bacterial cell cycle: tracking down necessary functions and their regulators. Trends in Microbiology, 2001, 9, 405-407.	7.7	6
126	Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Molecular Microbiology, 2001, 39, 949-959.	2.5	67

#	Article	IF	CITATIONS
127	A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Molecular Microbiology, 2001, 40, 347-360.	2.5	56
128	Regulation of Stalk Elongation by Phosphate in Caulobacter crescentus. Journal of Bacteriology, 2000, 182, 337-347.	2.2	117
129	Coordinating development with the cell cycle in Caulobacter. Current Opinion in Microbiology, 2000, 3, 589-595.	5.1	17
130	Cell Cycle Control of a Holdfast Attachment Gene in <i>Caulobacter crescentus</i> . Journal of Bacteriology, 1999, 181, 1118-1125.	2.2	44
131	Dominant Câ€ŧerminal deletions of FtsZ that affect its ability to localize inCaulobacterand its interaction with FtsA. Molecular Microbiology, 1998, 27, 1051-1063.	2.5	120
132	Ordered expression offtsQAandftsZduring theCaulobacter crescentuscell cycle. Molecular Microbiology, 1998, 28, 421-434.	2. 5	60
133	Morphological adaptation and inhibition of cell division during stationary phase in <i>Caulobacter crescentus</i> . Molecular Microbiology, 1998, 29, 963-973.	2.5	75
134	Genetic Analysis of Mecillinam-Resistant Mutants of Caulobacter crescentus Deficient in Stalk Biosynthesis. Journal of Bacteriology, 1998, 180, 5235-5239.	2.2	27
135	The Expression of Asymmetry During Caulobacter Cell Differentiation. Annual Review of Biochemistry, 1994, 63, 419-450.	11.1	140
136	Large scale sequencing projects using rapidly prepared double-stranded plasmid DNA. DNA Sequence, 1991, 1, 285-289.	0.7	14
137	Precise mapping and comparison of two evolutionarily related regions of the Escherichia coli K-12 chromosome. Journal of Molecular Biology, 1990, 214, 825-843.	4.2	27
138	Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Journal of Molecular Biology, 1990, 214, 845-864.	4.2	27
139	Overproduction and domain structure of the glutamyl-tRNA synthetase of Escherichia coli. Biochemistry and Cell Biology, 1989, 67, 404-410.	2.0	10
140	Prokaryotic Development: Strategies To Enhance Survival., 0,, 1-7.		4
141	Introduction to the Myxobacteria. , 0, , 219-242.		12
142	Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria., 0,, 163-199.		27
143	Actinomycete Development, Antibiotic Production, and Phylogeny: Questions and Challenges., 0,, 9-31.		34
144	Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium Myxococcus xanthus., 0,, 243-262.		6

#	Article	IF	CITATIONS
145	Cell-Interactive Sensing of the Environment. , 0, , 263-275.		2
146	Growth, Sporulation, and Other Tough Decisions. , 0, , 277-284.		3
147	Development of Stigmatella., 0,, 285-294.		3
148	The Dimorphic Life Cycle of <i>Caulobacter </i> and Stalked Bacteria., 0, , 295-317.		22
149	Regulation of Flagellum Biosynthesis and Motility in Caulobacter. , 0, , 319-339.		17
150	Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of Caulobacter. , 0, , 341-359.		13
151	Regulation of the Caulobacter Cell Cycle. , 0, , 361-378.		10
152	Swarming Migration by Proteus and Related Bacteria., 0,, 379-401.		9
153	Developmental Decisions during Sporulation in the Aerial Mycelium in Streptomyces. , 0, , 33-48.		23
154	The Chlamydial Developmental Cycle., 0,, 403-425.		22
155	Developmental Cycle of Coxiella burnetii. , 0, , 427-440.		6
156	Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids. , 0, , 441-466.		2
157	Regulation of the Initiation of Endospore Formation in <i>Bacillus subtilis</i> ., 0, , 151-166.		23
158	Asymmetric Division and Cell Fate during Sporulation in <i>Bacillus subtilis</i> ., 0, , 167-189.		7
159	Developmental Control in <i>Caulobacter crescentus</i> Environments., 0,, 385-395.		O
160	Co-Option and Detoxification of a Phage Lysin for Housekeeping Function. SSRN Electronic Journal, 0, ,	0.4	0