Alex saro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6840090/publications.pdf

Version: 2024-02-01

		57758	58581
105	7,054	44	82
papers	7,054 citations	h-index	g-index
106	106	106	5221
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The 700 ks <i>Chandra </i> Spiderweb Field. Astronomy and Astrophysics, 2022, 662, A54.	5.1	16
2	The Evolution of AGN Activity in Brightest Cluster Galaxies. Astronomical Journal, 2022, 163, 146.	4.7	7
3	Shocks in the stacked Sunyaev-Zel'dovich profiles of clusters II: Measurements from SPT-SZ +Â <i>Planck</i> Compton- <i>y</i> map. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1645-1663.	4.4	15
4	Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future. Astrophysical Journal, 2022, 931, 139.	4.5	5
5	Machine learning to identify ICL and BCG in simulated galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3082-3096.	4.4	4
6	Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4696-4717.	4.4	3
7	Weighing cosmic structures with clusters of galaxies and the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2022, 515, 857-870.	4.4	10
8	Constraints on stellar rotation from the evolution of Sr and Ba in the Galactic halo. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2495-2507.	4.4	9
9	Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Physical Review D, 2021, 103, .	4.7	34
10	Gravitational redshifting of galaxies in the SPIDERS cluster catalogue. Monthly Notices of the Royal Astronomical Society, 2021, 503, 669-678.	4.4	8
11	Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1253-1272.	4.4	12
12	SPIDERS: an overview of the largest catalogue of spectroscopically confirmed x-ray galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5763-5777.	4.4	18
13	Mass calibration of distant SPT galaxy clusters through expanded weak-lensing follow-up observations with <i>HST</i> , VLT, & Gemini-South. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3923-3943.	4.4	14
14	The Cluster HEritage project with <i>XMM-Newton</i> : Mass Assembly and Thermodynamics at the Endpoint of structure formation. Astronomy and Astrophysics, 2021, 650, A104.	5.1	36
15	Velocity dispersion of brightest cluster galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5780-5795.	4.4	5
16	On the impact of baryons on the halo mass function, bias, and cluster cosmology. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2316-2335.	4.4	42
17	SPIDERS: overview of the X-ray galaxy cluster follow-up and the final spectroscopic data release. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3976-3992.	4.4	16
18	Cosmology dependence of galaxy cluster scaling relations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3728-3740.	4.4	13

#	Article	IF	Citations
19	Validation of selection function, sample contamination and mass calibration in galaxy cluster samples. Monthly Notices of the Royal Astronomical Society, 2020, 498, 771-798.	4.4	12
20	Mass calibration of the CODEX cluster sample using SPIDERS spectroscopy – II. The X-ray luminosity–mass relation. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2736-2746.	4.4	9
21	Constraining radio mode feedback in galaxy clusters with the cluster radio AGNs properties to $\langle i \rangle 2 \langle j \rangle \hat{A} \hat{a}^4 1$. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1705-1723.	4.4	6
22	A joint SZ–X-ray–optical analysis of the dynamical state of 288 massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 495, 705-725.	4.4	24
23	Galaxy Clusters Selected via the Sunyaev–Zel'dovich Effect in the SPTpol 100-square-degree Survey. Astronomical Journal, 2020, 159, 110.	4.7	41
24	Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Physical Review D, 2020, 102, .	4.7	140
25	On the phase-space structure of galaxy clusters from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3462-3480.	4.4	5
26	Cosmology dependence of halo masses and concentrations in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5056-5071.	4.4	18
27	The SPTpol Extended Cluster Survey. Astrophysical Journal, Supplement Series, 2020, 247, 25.	7.7	101
28	Spectroscopic Confirmation of Five Galaxy Clusters at zÂ>Â1.25 in the 2500 deg ² SPT-SZ Survey. Astrophysical Journal, 2019, 870, 7.	4.5	18
29	X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton. Astrophysical Journal, 2019, 871, 50.	4.5	74
30	Cluster Cosmology Constraints from the 2500 deg ² SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. Astrophysical Journal, 2019, 878, 55.	4.5	211
31	Mass calibration of the CODEX cluster sample using SPIDERS spectroscopy – I. The richness–mass relation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1594-1607.	4.4	20
32	Galaxy populations in the most distant SPT-SZ clusters. Astronomy and Astrophysics, 2019, 622, A117.	5.1	45
33	Sunyaev–Zel'dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2871-2906.	4.4	60
34	Weak-lensing analysis of SPT-selected galaxy clusters using Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2019, 485, 69-87.	4.4	21
35	Anatomy of a Cooling Flow: The Feedback Response to Pure Cooling in the Core of the Phoenix Cluster. Astrophysical Journal, 2019, 885, 63.	4.5	42
36	Galaxy kinematics and mass calibration in massive SZE-selected galaxy clusters to <i>z</i> $\hat{A}=\hat{A}1.3$. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1043-1061.	4.4	25

#	Article	IF	CITATIONS
37	Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates. Monthly Notices of the Royal Astronomical Society, 2018, 475, 853-866.	4.4	28
38	Galaxy Cluster Mass Reconstruction Project – IV. Understanding the effects of imperfect membership on cluster mass estimation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 324-340.	4.4	26
39	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
40	Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2Â<2Â<Â1.25. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3072-3099.	4.4	70
41	Cosmology with the pairwise kinematic SZ effect: calibration and validation using hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5320-5335.	4.4	16
42	Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev–Zel'dovich Survey. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2635-2678.	4.4	77
43	Velocity Segregation and Systematic Biases in Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey. Astrophysical Journal, 2017, 837, 88.	4.5	17
44	Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3347-3360.	4.4	17
45	nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2027-2038.	4.4	16
46	Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4899-4920.	4.4	87
47	SZE observables, pressure profiles and centre offsets in Magneticum simulation galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3069-3087.	4.4	43
48	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2016, 832, 95.	4.5	179
49	SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2016, 227, 3.	7.7	36
50	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	4.4	45
51	THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 224, 1.	7.7	233
52	STAR-FORMING BRIGHTEST CLUSTER GALAXIES AT 0.25Â<ÂzÂ<Â1.25: A TRANSITIONING FUEL SUPPLY. Astrophysical Journal, 2016, 817, 86.	4.5	70
53	THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 0Â<ÂzÂ<Â1.5. Astrophysical Journal, 2016, 826, 124.	4.5	63
54	OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA*. Astrophysical Journal, 2016, 827, 51.	4.5	21

#	Article	IF	CITATIONS
55	Galaxy populations in the 26 most massive galaxy clusters in the South Pole Telescope SPT-SZ survey. Monthly Notices of the Royal Astronomical Society, 2016, 462, 830-843.	4.4	26
56	Quantifying tensions between CMB and distance data sets in models with free curvature or lensing amplitude. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1416-1430.	4.4	32
57	Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3172-3193.	4.4	88
58	nIFTY galaxy cluster simulations $\hat{a}\in$ III. The similarity and diversity of galaxies and subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1096-1116.	4.4	32
59	nIFTy galaxy cluster simulations $\hat{a} \in \mathbb{N}$. Quantifying the influence of baryons on halo properties. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4052-4073.	4.4	39
60	Baryon content of massive galaxy clusters at $0.57 \text{Å\<} \hat{A} < i > z < / i > \hat{A} \text{\<} \hat{A} 1.33$. Monthly Notices of the Royal Astronomical Society, 2016, 455, 258-275.	4.4	54
61	nIFTy galaxy cluster simulations $\hat{a} \in \mathbb{C}$ I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	4.4	63
62	Stellar mass to halo mass scaling relation for X-ray-selected low-mass galaxy clusters and groups out to redshift <i>z</i> â%^1. Monthly Notices of the Royal Astronomical Society, 2016, 458, 379-393.	4.4	24
63	Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3050-3065.	4.4	26
64	Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2361-2373.	4.4	170
65	Galaxy Cluster Mass Reconstruction Project – II. Quantifying scatter and bias using contrasting mock catalogues. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1897-1920.	4.4	65
66	Analysis of Sunyaev–Zel'dovich effect mass–observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2085-2099.	4.4	18
67	Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2305-2319.	4.4	87
68	MEASUREMENT OF GALAXY CLUSTER INTEGRATED COMPTONIZATION AND MASS SCALING RELATIONS WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 799, 137.	4.5	7
69	MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION $ f $ (sub> $ f $) (is very large of the SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION $ f $) (sub> $ f $) (is very large of the SPT-SZ GALAXY CLUSTER SAMPLE USING ASTROPHYSICAL JOURNAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY OF THE SPT-SZ GALAXY OF THE SPT-SZ GA	4.5	120
70	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2015, 216, 27.	7.7	464
71	X-RAY CAVITIES IN A SAMPLE OF 83 SPT-SELECTED CLUSTERS OF GALAXIES: TRACING THE EVOLUTION OF AGN FEEDBACK IN CLUSTERS OF GALAXIES OUT TO $\langle i \rangle z \langle j \rangle = 1.2$. Astrophysical Journal, 2015, 805, 35.	4.5	115
72	A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 806, 247.	4.5	66

#	Article	IF	CITATIONS
73	Searching for large-scale structures around high-redshift radio galaxies with Herschel. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1882-1893.	4.4	45
74	Galaxy cluster mass reconstruction project $\hat{a} \in \mathbb{C}$ I. Methods and first results on galaxy-based techniques. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1513-1536.	4.4	58
75	SPT-CL J2040–4451: AN SZ-SELECTED GALAXY CLUSTER AT <i>>z</i> = 1.478 WITH SIGNIFICANT ONGOING STAR FORMATION. Astrophysical Journal, 2014, 794, 12.	4.5	42
76	OPTICAL SPECTROSCOPY AND VELOCITY DISPERSIONS OF GALAXY CLUSTERS FROM THE SPT-SZ SURVEY. Astrophysical Journal, 2014, 792, 45.	4.5	103
77	THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 67.	4.5	90
78	Constraints on the CMB temperature evolution using multiband measurements of the Sunyaevâ€"Zel'dovich effect with the South Pole Telescope. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2610-2615.	4.4	51
79	Cosmological simulations of black hole growth: AGN luminosities and downsizing. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2304-2324.	4.4	293
80	TOWARD UNBIASED GALAXY CLUSTER MASSES FROM LINE-OF-SIGHT VELOCITY DISPERSIONS. Astrophysical Journal, 2013, 772, 47.	4.5	111
81	THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < <i>z < /i> < 1.2 SELECTED FROM THE SPT-SZ SURVEY. Astrophysical Journal, 2013, 774, 23.</i>	4.5	144
82	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 127.	4.5	240
83	SPT-CL J0205–5829: A <i>>z</i> = 1.32 EVOLVED MASSIVE GALAXY CLUSTER IN THE SOUTH POLE TELESCOPE SUNYAEV-ZEL'DOVICH EFFECT SURVEY. Astrophysical Journal, 2013, 763, 93.	4.5	54
84	COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178Âdeg ² OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 147.	4.5	206
85	Optical followup of galaxy clusters detected by the South Pole Telescope. Journal of Physics: Conference Series, 2012, 375, 032011.	0.4	0
86	HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2012, 761, 183.	4.5	29
87	A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature, 2012, 488, 349-352.	27.8	154
88	REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2012, 761, 22.	4.5	89
89	WEAK-LENSING MASS MEASUREMENTS OF FIVE GALAXY CLUSTERS IN THE SOUTH POLE TELESCOPE SURVEY USING MAGELLAN/MEGACAM. Astrophysical Journal, 2012, 758, 68.	4.5	42
90	SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED <i>PLANCK</i> SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE. Astrophysical Journal Letters, 2011, 735, L36.	8.3	28

#	Article	IF	CITATIONS
91	DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1. Astrophysical Journal, 2011, 731, 86.	4.5	104
92	A SUNYAEV-ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg < sup > 2 < /sup > SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2011, 738, 139.	4.5	213
93	NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS. Astrophysical Journal, 2011, 743, 156.	4.5	316
94	Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1670-1690.	4.4	211
95	The cool side of Lyman alpha emitters. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1449-1457.	4.4	51
96	Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	7
97	Photometric and clustering properties of hydrodynamical galaxies in a cosmological volume: results at $z=0$. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1376-1386.	4.4	8
98	Simulating the formation of a protocluster at $\langle i \rangle z \langle i \rangle \hat{a}^1 / 4$ 2. Monthly Notices of the Royal Astronomical Society, 2009, 392, 795-800.	4.4	23
99	Lyman alpha emitter evolution in the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2009, 400, 2000-2011.	4.4	62
100	Evolution of the metal content of the intracluster medium with hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1265-1273.	4.4	21
101	The effect of gas dynamics on semi-analytic modelling of cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 391, 565-576.	4.4	11
102	Properties of the galaxy population in hydrodynamical simulations of clusters. Monthly Notices of the Royal Astronomical Society, 2006, 373, 397-410.	4.4	60
103	High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples. Monthly Notices of the Royal Astronomical Society, 0, , stx095.	4.4	9
104	Galaxy Populations in Massive Galaxy Clusters to z = 1.1: Color Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction. Monthly Notices of the Royal Astronomical Society, 0, , stx175.	4.4	30
105	Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies – a Forecast. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	14