Changyong Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6839969/changyong-zhang-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52 2,196 27 46 g-index

54 2,897 10.8 5.74 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
52	Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. <i>Water Research</i> , 2018 , 128, 314-330	12.5	340
51	Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. <i>Water Research</i> , 2017 , 120, 229-237	12.5	168
50	Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 32-38	11.8	112
49	Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	94
48	Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. <i>Bioresource Technology</i> , 2015 , 190, 367-72	11	92
47	Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. <i>Water Research</i> , 2018 , 144, 296-303	12.5	88
46	Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization. <i>Environmental Science & Environmental Science & Environment</i>	10.3	87
45	Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. <i>Water Research</i> , 2018 , 145, 220-230	12.5	77
44	Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. <i>Journal of Power Sources</i> , 2015 , 273, 580-583	8.9	75
43	Capacitive Membrane Stripping for Ammonia Recovery (CapAmm) from Dilute Wastewaters. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 43-49	11	74
42	Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. <i>Environmental Science & Environmental Science & Environ</i>	10.3	72
41	Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Research, 2017 , 121, 302-310	12.5	70
40	A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination. <i>Environmental Science & Environmental Science & En</i>	10.3	70
39	Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon. <i>Water Research</i> , 2015 , 85, 371-6	12.5	65
38	Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 243-257	4.2	56
37	Ammonia-Rich Solution Production from Wastewaters Using Chemical-Free Flow-Electrode Capacitive Deionization. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 6480-6485	8.3	54
36	Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Research, 2020 , 168, 115186	12.5	51

(2020-2019)

35	Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. <i>Electrochimica Acta</i> , 2019 , 299, 727-735	6.7	47
34	Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization. <i>Desalination</i> , 2016 , 381, 95-99	10.3	38
33	Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. <i>Water Research</i> , 2020 , 173, 115580	12.5	32
32	Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells. <i>Applied Energy</i> , 2016 , 165, 670-675	10.7	32
31	Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. <i>Environmental Science & Energy Technology</i> , 2019 , 53, 13364	-1337	3 ³²
30	Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. <i>Environmental Science & Environmental Science & Envir</i>	10.3	32
29	The impact of absorbents on ammonia recovery in a capacitive membrane stripping system. <i>Chemical Engineering Journal</i> , 2020 , 382, 122851	14.7	32
28	Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. <i>Environmental Science & Environmental & Envi</i>	10.3	31
27	Moderately oxidized graphenellarbon nanotubes hybrid for high performance capacitive deionization. <i>RSC Advances</i> , 2016 , 6, 58907-58915	3.7	29
26	Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). <i>Environmental Science & Environmental Science & Environmental</i>	10.3	29
25	Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode. <i>Electrochimica Acta</i> , 2015 , 161, 245-251	6.7	27
24	Effect of the Presence of Carbon in TiO Electrodes on Anodic Oxidation of Contaminants. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	25
23	Performance enhancement of microbial fuel cell by applying transient-state regulation. <i>Applied Energy</i> , 2017 , 185, 582-588	10.7	24
22	Scaling behavior of iron in capacitive deionization (CDI) system. Water Research, 2020, 171, 115370	12.5	20
21	Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). <i>Water Research</i> , 2021 , 189, 116653	12.5	18
20	Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. <i>ACS ES&T Water</i> , 2021 , 1, 175-184		16
19	Implication of Non-electrostatic Contribution to Deionization in Flow-Electrode CDI: Case Study of Nitrate Removal From Contaminated Source Waters. <i>Frontiers in Chemistry</i> , 2019 , 7, 146	5	14
18	Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis. <i>Water Research</i> , 2020 , 181, 115917	12.5	14

17	Phosphate recovery as vivianite using a flow-electrode capacitive desalination (FCDI) and fluidized bed crystallization (FBC) coupled system. <i>Water Research</i> , 2021 , 194, 116939	12.5	14
16	Enhancing extracellular electron transfer efficiency and bioelectricity production by vapor polymerization Poly (3,4-ethylenedioxythiophene)/MnO hybrid anode. <i>Bioelectrochemistry</i> , 2019 , 126, 72-78	5.6	8
15	Manipulation of planar oxygen defect arrangements in multifunctional magnII titanium oxide hybrid systems: from energy conversion to water treatment. <i>Energy and Environmental Science</i> , 2020 , 13, 5080-5096	35.4	6
14	Iron Transformation and Its Role in Phosphorus Immobilization in a UCT-MBR with Vivianite Formation Enhancement. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	6
13	Direct electron transfer (DET) processes in a flow anode system-Energy-efficient electrochemical oxidation of phenol. <i>Water Research</i> , 2021 , 203, 117547	12.5	5
12	Insight into the overpotential and thermodynamic mechanism of hydroxyl radical formation on diamond anode. <i>Applied Surface Science</i> , 2021 , 565, 150559	6.7	5
11	Donnan Dialysis-Osmotic Distillation (DD-OD) Hybrid Process for Selective Ammonium Recovery Driven by Waste Alkali. <i>Environmental Science & Environmental Science & Environme</i>	10.3	3
10	Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. Water Research, 2021, 203, 117	7 49 85	3
9	Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification <i>Water Research</i> , 2022 , 217, 118425	12.5	2
8	Formation mechanism of iron scale in membrane capacitive deionization (MCDI) system. <i>Desalination</i> , 2020 , 495, 114636	10.3	1
7	Novel Current Collector with Mosquito-Repellent Incense-Shaped Channel of Flow Electrode Capacitive Deionization. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	1
6	Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA) <i>Water Research</i> , 2022 , 216, 118319	12.5	1
5	Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO anode: Optimization and mechanism. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127655	12.8	0
4	Analysis of the mixing performance of a full-scale membrane bioreactor for municipal wastewater treatment. <i>Bioresource Technology</i> , 2018 , 250, 932-935	11	O
3	Significantly enhanced P release from vivianite as a fertilizer in rhizospheric soil: Effects of citrate. <i>Environmental Research</i> , 2022 , 113567	7.9	О
2	Electrochemical membrane technology for environmental remediation 2022, 227-263		

Membrane-based electrochemical technologies: I. Membrane capacitive deionization and flow-electrode capacitive deionization **2022**, 317-360