Frank E Osterloh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6839846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chemistry of Materials, 2008, 20, 35-54.	6.7	1,991
2	Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42, 2294-2320.	38.1	1,846
3	A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants. Chemistry of Materials, 2004, 16, 2509-2511.	6.7	600
4	Particle suspension reactors and materials for solar-driven water splitting. Energy and Environmental Science, 2015, 8, 2825-2850.	30.8	344
5	CdSe-MoS ₂ : A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light. Journal of Physical Chemistry C, 2010, 114, 10628-10633.	3.1	263
6	Recent developments in solar water-splitting photocatalysis. MRS Bulletin, 2011, 36, 17-22.	3.5	259
7	Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis. Advanced Materials, 2010, 22, 951-956.	21.0	244
8	Photocatalytic Water Oxidation with Nonsensitized IrO ₂ Nanocrystals under Visible and UV Light. Journal of the American Chemical Society, 2011, 133, 7264-7267.	13.7	239
9	Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting. ACS Nano, 2012, 6, 7420-7426.	14.6	236
10	Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals. ACS Nano, 2013, 7, 4316-4325.	14.6	234
11	Structure defects in g-C ₃ N ₄ limit visible light driven hydrogen evolution and photovoltage. Journal of Materials Chemistry A, 2014, 2, 20338-20344.	10.3	233
12	Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Letters, 2017, 2, 445-453.	17.4	214
13	Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy and Environmental Science, 2011, 4, 4270.	30.8	209
14	Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chemical Communications, 2012, 48, 371-373.	4.1	200
15	Overall photocatalytic water splitting with NiOx–SrTiO3 – a revised mechanism. Energy and Environmental Science, 2012, 5, 9543.	30.8	199
16	Evolution of Physical and Photocatalytic Properties in the Layered Titanates A ₂ Ti ₄ O ₉ (A = K, H) and in Nanosheets Derived by Chemical Exfoliation. Chemistry of Materials, 2010, 22, 1220-1228.	6.7	160
17	Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime. Chemistry of Materials, 2012, 24, 698-704.	6.7	158
18	Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi ₂ O ₄ nanocrystals. Journal of Materials Chemistry A, 2016, 4, 2936-2942.	10.3	158

#	Article	IF	CITATIONS
19	Calcium Niobate Semiconductor Nanosheets as Catalysts for Photochemical Hydrogen Evolution from Water. Journal of Physical Chemistry C, 2007, 111, 14589-14592.	3.1	135
20	Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO ₃ in natural sunlight. Energy and Environmental Science, 2019, 12, 1385-1395.	30.8	134
21	Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide. Journal of Physical Chemistry C, 2009, 113, 479-485.	3.1	129
22	First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chemical Communications, 2008, , 2206.	4.1	127
23	pH-Controlled Assembly and Disassembly of Electrostatically Linked CdSeâ^'SiO2and Auâ^'SiO2Nanoparticle Clusters. Langmuir, 2003, 19, 7003-7011.	3.5	119
24	Limiting factors for photochemical charge separation in BiVO ₄ /Co ₃ O ₄ , a highly active photocatalyst for water oxidation in sunlight. Journal of Materials Chemistry A, 2014, 2, 9405-9411.	10.3	118
25	Evolution of Size and Shape in the Colloidal Crystallization of Gold Nanoparticles. Journal of the American Chemical Society, 2007, 129, 7793-7798.	13.7	114
26	Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals. Journal of Physical Chemistry Letters, 2011, 2, 2688-2694.	4.6	105
27	K4Nb6O17-derived photocatalysts for hydrogen evolution from water: Nanoscrolls versus nanosheets. Journal of Solid State Chemistry, 2008, 181, 1678-1683.	2.9	98
28	Nickel Oxide Particles Catalyze Photochemical Hydrogen Evolution from Water—Nanoscaling Promotes P-Type Character and Minority Carrier Extraction. ACS Nano, 2015, 9, 5135-5142.	14.6	98
29	Extrinsic magnetoresistance in magnetite nanoparticles. Journal of Applied Physics, 2003, 93, 7951-7953.	2.5	90
30	Photocatalytic Water Splitting with Suspended Calcium Niobium Oxides: Why Nanoscale is Better than Bulk – A Kinetic Analysis. Journal of Physical Chemistry C, 2012, 116, 3161-3170.	3.1	88
31	A Building Block Approach to Photochemical Water-Splitting Catalysts Based on Layered Niobate Nanosheets. Journal of Physical Chemistry C, 2008, 112, 6202-6208.	3.1	82
32	Synthesis, X-ray structure and electrochemical characterisation of a binuclear thiolate bridged Ni–Fe–nitrosyl complex, related to the active site of NiFe hydrogenase. Chemical Communications, 1997, , 979-980.	4.1	81
33	ZnOâ^'CdSe Nanoparticle Clusters as Directional Photoemitters with Tunable Wavelength. Journal of the American Chemical Society, 2005, 127, 10152-10153.	13.7	78
34	Photochemical Charge Separation in Nanocrystal Photocatalyst Films: Insights from Surface Photovoltage Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 782-786.	4.6	78
35	Enhancing the Photoactivity of Faceted BiVO ₄ via Annealing in Oxygenâ€Deficient Condition. Particle and Particle Systems Characterization, 2017, 34, 1600290.	2.3	75
36	Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol. Journal of Physical Chemistry C, 2008, 112, 2394-2403.	3.1	72

#	Article	IF	CITATIONS
37	High alkalinity boosts visible light driven H ₂ evolution activity of g-C ₃ N ₄ in aqueous methanol. Chemical Communications, 2014, 50, 15521-15524.	4.1	69
38	Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting. Nano Letters, 2018, 18, 805-810.	9.1	69
39	Alkanethiol-Induced Structural Rearrangements in Silicaâ^'Gold Coreâ^'Shell-type Nanoparticle Clusters:Â An Opportunity for Chemical Sensor Engineering. Langmuir, 2004, 20, 5553-5558.	3.5	68
40	Use of surface photovoltage spectroscopy to probe energy levels and charge carrier dynamics in transition metal (Ni, Cu, Fe, Mn, Rh) doped SrTiO ₃ photocatalysts for H ₂ evolution from water. Journal of Materials Chemistry A, 2018, 6, 5774-5781.	10.3	66
41	Unidentate and Bidentate Binding of Nickel(II) Complexes to an Fe4S4ClusterviaBridging Thiolates:Â Synthesis, Crystal Structures, and Electrochemical Properties of Model Compounds for the Active Sites of Nickel Containing CO Dehydrogenase/Acetyl-CoA Synthase. Journal of the American Chemical Society, 1997, 119, 5648-5656	13.7	65
42	A tellurium-substituted Lindqvist-type polyoxoniobate showing high H ₂ evolution catalyzed by tellurium nanowires via photodecomposition. Chemical Communications, 2014, 50, 836-838.	4.1	61
43	Flux Synthesis, Optical and Photocatalytic Properties of <i>n</i> -type Sn ₂ TiO ₄ : Hydrogen and Oxygen Evolution under Visible Light. Chemistry of Materials, 2016, 28, 8876-8889.	6.7	61
44	Controlling the Trap State Landscape of Colloidal CdSe Nanocrystals with Cadmium Halide Ligands. Chemistry of Materials, 2015, 27, 744-756.	6.7	58
45	Unique LaTaO4 Polymorph for Multiple Energy Applications. Chemistry of Materials, 2009, 21, 4731-4737.	6.7	56
46	Enhancing Majority Carrier Transport in WO ₃ Water Oxidation Photoanode via Electrochemical Doping. Journal of the Electrochemical Society, 2015, 162, H65-H71.	2.9	56
47	Molybdenumâ^`Ironâ^`Sulfur Clusters of Nuclearities Eight and Sixteen, Including a Topological Analogue of the P-Cluster of Nitrogenase. Inorganic Chemistry, 2001, 40, 224-232.	4.0	51
48	Reduced Mono-, Di-, and Tetracubane-Type Clusters Containing the [MoFe3S4]2+Core Stabilized by Tertiary Phosphine Ligation. Inorganic Chemistry, 2000, 39, 980-989.	4.0	50
49	Stringing up the Pearls:Â Self-Assembly, Optical and Electronic Properties of CdSeâ~' and Auâ~'LiMo3Se3Nanoparticleâ~'Nanowire Composites. Nano Letters, 2003, 3, 125-129.	9.1	45
50	A Molybdenum-Iron-Sulfur Cluster Containing Structural Elements Relevant to the P-Cluster of Nitrogenase. Angewandte Chemie - International Edition, 1999, 38, 2066-2070.	13.8	44
51	Charge Separation in a Niobate Nanosheet Photocatalyst Studied with Photochemical Labeling. Langmuir, 2010, 26, 7254-7261.	3.5	44
52	P3HT:PCBM Bulk-Heterojunctions: Observing Interfacial and Charge Transfer States with Surface Photovoltage Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 14723-14731.	3.1	44
53	Improved Niobate Nanoscroll Photocatalysts for Partial Water Splitting. ChemSusChem, 2011, 4, 185-190.	6.8	43
54	Photochemical Charge Separation at Particle Interfaces: The n-BiVO ₄ –p-Silicon System. ACS Applied Materials & Interfaces, 2015, 7, 5959-5964.	8.0	43

#	Article	IF	CITATIONS
55	Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors – mapping oxygen vacancies and their effect on photovoltage. Journal of Materials Chemistry A, 2019, 7, 12303-12316.	10.3	43
56	Chemical Sensing with LiMo3Se3Nanowire Films. Journal of the American Chemical Society, 2005, 127, 7666-7667.	13.7	41
57	Photochemical Charge Separation in Poly(3-hexylthiophene) (P3HT) Films Observed with Surface Photovoltage Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 26905-26913.	3.1	41
58	Use of Surface Photovoltage Spectroscopy to Measure Built-in Voltage, Space Charge Layer Width, and Effective Band Gap in CdSe Quantum Dot Films. Journal of Physical Chemistry Letters, 2016, 7, 3335-3340.	4.6	38
59	Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I Clathrates: A ₈ Ga ₈ Si ₃₈ (A = K, Rb, Cs) and K ₈ Al ₈ Si ₃₈ . Chemistry of Materials, 2015, 27, 2812-2820.	6.7	37
60	Thiol-Capped Germanium Nanocrystals: Preparation and Evidence for Quantum Size Effects. Chemistry of Materials, 2014, 26, 2138-2146.	6.7	36
61	Nanoscale Effects in Water Splitting Photocatalysis. Topics in Current Chemistry, 2015, 371, 105-142.	4.0	36
62	Solution Self-Assembly of Magnetic Light Modulators from Exfoliated Perovskite and Magnetite Nanoparticles. Journal of the American Chemical Society, 2002, 124, 6248-6249.	13.7	33
63	Planar Gold Nanoparticle Clusters as Microscale Mirrors. Journal of the American Chemical Society, 2006, 128, 3868-3869.	13.7	33
64	Assembly of Coreâ^'Shell Structures for Photocatalytic Hydrogen Evolution from Aqueous Methanol. Chemistry of Materials, 2010, 22, 3362-3368.	6.7	32
65	<i>mP</i> â€BaP ₃ : A New Phase from an Old Binary System. Chemistry - A European Journal, 2014, 20, 10829-10837.	3.3	30
66	Fe3O4-LiMo3Se3Nanoparticle Clusters as Superparamagnetic Nanocompasses. Langmuir, 2005, 21, 9709-9713.	3.5	28
67	Synthesis and Real-Time Magnetic Manipulation of a Biaxial Superparamagnetic Colloid. Journal of Physical Chemistry B, 2005, 109, 11151-11157.	2.6	27
68	Aluminum enhances photochemical charge separation in strontium titanate nanocrystal photocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 16170-16176.	10.3	27
69	Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. Journal of Physical Chemistry Letters, 2014, 5, 2510-2511.	4.6	26
70	Surface Photovoltage Spectroscopy Resolves Interfacial Charge Separation Efficiencies in ZnO Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2582-2588.	3.1	26
71	Use of potential determining ions to control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst. Energy and Environmental Science, 2014, 7, 736-743.	30.8	25
72	Planar Polarized Light Emission from CdSe Nanoparticle Clusters. Journal of the American Chemical Society, 2005, 127, 15556-15561.	13.7	24

#	Article	IF	CITATIONS
73	ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation. Electrochimica Acta, 2017, 258, 396-404.	5.2	24
74	Defect States Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 27195-27204.	8.0	24
75	Nickel(II) complexes bound to an [Fe4S4] cluster via bridging thiolates:synthesis and crystal structure of model compounds for the active site of nickel CO dehydrogenase. Chemical Communications, 1996, , 777.	4.1	22
76	Size and Morphology of Suspended WO3 Particles Control Photochemical Charge Carrier Extraction and Photocatalytic Water Oxidation Activity. Topics in Catalysis, 2016, 59, 750-756.	2.8	22
77	Light Intensity Dependence of Photochemical Charge Separation in the BiVO ₄ /Ru-SrTiO ₃ :Rh Direct Contact Tandem Photocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2020, 124, 9724-9733.	3.1	22
78	Local Structural Disorder in Metavanadates MV ₂ O ₆ (M = Zn and Cu) Synthesized by the Deep Eutectic Solvent Route: Photoactive Oxides with Oxygen Vacancies. Chemistry of Materials, 2021, 33, 1667-1682.	6.7	21
79	Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy. Journal of Physical Chemistry Letters, 2014, 5, 3354-3359.	4.6	20
80	Photochemistry of hematite photoanodes under zero applied bias. Applied Catalysis A: General, 2016, 521, 168-173.	4.3	20
81	Role of Surface States in Photocatalytic Oxygen Evolution with CuWO ₄ Particles. Journal of the Electrochemical Society, 2019, 166, H3014-H3019.	2.9	20
82	Synthesis and Characterization of Neutral Hexanuclear Iron Sulfur Clusters Containing Stair-like [Fe6(μ3-S)4(μ2-SR)4] and Nest-like [Fe6(μ3-S)2(μ2-S)2(μ4-S)(μ2-SR)4] Core Structures. Inorganic Ch 37, 3581-3587.	iemistaty, 19	9819
83	Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells. Journal of Materials Chemistry, 2012, 22, 20443.	6.7	19
84	A Lightâ€Assisted Biomass Fuel Cell for Renewable Electricity Generation from Wastewater. ChemSusChem, 2012, 5, 1482-1487.	6.8	18
85	Surface Photovoltage Spectroscopy Observes Sub-Band-Gap Defects in Hydrothermally Synthesized SrTiO ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 25081-25090.	3.1	18
86	Investigation of charge separation in particulate oxysulfide and oxynitride photoelectrodes by surface photovoltage spectroscopy. Chemical Physics Letters, 2017, 683, 140-144.	2.6	16
87	The Low Concentration of CO ₂ in the Atmosphere Is an Obstacle to a Sustainable Artificial Photosynthesis Fuel Cycle Based on Carbon. ACS Energy Letters, 2016, 1, 1060-1061.	17.4	15
88	Themed issue on water splitting and photocatalysis. Journal of Materials Chemistry A, 2016, 4, 2764-2765.	10.3	14
89	Hydrogen evolution with fluorescein-sensitized Pt/SrTiO3 nanocrystal photocatalysts is limited by dye adsorption and regeneration. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112705.	3.9	14
90	Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films. Journal of Materials Chemistry A, 2014, 2, 16608-16616.	10.3	13

#	Article	IF	CITATIONS
91	Wavelength dependent photochemical charge transfer at the Cu ₂ O–BiVO ₄ particle interface – evidence for tandem excitation. Chemical Communications, 2018, 54, 9023-9026.	4.1	13
92	Depletion layer controls photocatalytic hydrogen evolution with p-type gallium phosphide particles. Journal of Materials Chemistry A, 2019, 7, 18020-18029.	10.3	13
93	Determination of Antiferromagnetic Exchange Coupling in the Tetrahedral Thiolate-Bridged Diferrous Complex [Fe2(SEt)6]2 Inorganic Chemistry, 2002, 41, 7081-7085.	4.0	12
94	A low temperature cluster condensation approach to CdS nanocrystals: oxidative aggregation of [Cd10S4Br4(SR)12]4? with sulfurElectronic supplementary information (ESI) available: X-ray powder, IR and 13C NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b302266h/. Chemical Communications, 2003, , 1700.	4.1	12
95	Bandgap-adjustment and enhanced surface photovoltage in Y-substituted LaTa ^{IV} O ₂ N. Journal of Materials Chemistry A, 2020, 8, 11837-11848.	10.3	12
96	Decoupling Effects of Surface Recombination and Barrier Height on p-Si(111) Photovoltage in Semiconductor Liquid Junctions via Molecular Dipoles and Metal Oxides. ACS Applied Energy Materials, 2019, 2, 66-79.	5.1	11
97	Surface photovoltage spectroscopy observes junctions and carrier separation in gallium nitride nanowire arrays for overall water-splitting. Journal of Chemical Physics, 2020, 153, 144707.	3.0	11
98	Metallic LiMo ₃ Se ₃ Nanowire Film Sensors for Electrical Detection of Metal Ions in Water. Langmuir, 2008, 24, 7031-7037.	3.5	10
99	Impact of Nb(V) Substitution on the Structure and Optical and Photoelectrochemical Properties of the Cu5(Ta1–xNbx)11O30 Solid Solution. Inorganic Chemistry, 2019, 58, 6845-6857.	4.0	10
100	Fermi Level Pinning Controls Band Bending and Photochemical Charge Separation in Particles of n-SrTiO3, n-SrTiO3:Al, and n-GaAs:Te. Journal of Physical Chemistry C, 2020, 124, 18426-18435.	3.1	10
101	The Deep Eutectic Solvent Precipitation Synthesis of Metastable Zn ₄ V ₂ O ₉ . Inorganic Chemistry, 2022, 61, 154-169.	4.0	9
102	Synthesis of SrTiO ₃ and Al-doped SrTiO ₃ <i>via</i> the deep eutectic solvent route. Materials Advances, 2022, 3, 4736-4747.	5.4	9
103	Molecular Adsorption to LiMo3Se3Nanowire Film Chemiresistors. Analytical Chemistry, 2006, 78, 1306-1311.	6.5	8
104	Photocatalytic water oxidation with iron oxide hydroxide (rust) nanoparticles. Journal of Photonics for Energy, 2016, 7, 012003.	1.3	8
105	Band Gap Adjustment in Perovskite-type Eu _{1â^'<i>x</i>} Ca _{ <i>x</i> } TiO ₃ via Ammonolysis. Zeitschrift Fur Physikalische Chemie, 2020, 234, 887-909.	2.8	8
106	Effect of Additives on LiMo3Se3Nanowire Film Chemical Sensors. Langmuir, 2006, 22, 8253-8256.	3.5	6
107	A Nanowire–Nanoparticle Cross-Linking Approach to Highly Porous Electrically Conducting Solids. Angewandte Chemie - International Edition, 2006, 45, 3653-3656.	13.8	6
108	Ferroelectric surface photovoltage enhancement in chromium-doped SrTiO ₃ nanocrystal photocatalysts for hydrogen evolution. Materials Advances, 2020, 1, 1382-1389.	5.4	6

#	Article	IF	CITATIONS
109	Journal of Materials Chemistry A Editor's choice web collection: "Recent advances in solar fuels and photocatalysis researchâ€. Journal of Materials Chemistry A, 2018, 6, 9763-9764.	10.3	5
110	DIRECTIONAL SUPERPARAMAGNETISM AND PHOTOLUMINESCENCE IN CLUSTERS OF MAGNETITE AND CADMIUM SELENIDE NANOPARTICLES. Comments on Inorganic Chemistry, 2006, 27, 41-59.	5.2	4
111	Light Harvesting: Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis (Adv. Mater. 9/2010). Advanced Materials, 2010, 22, n/a-n/a.	21.0	4
112	Photochemical Charge Separation and Dye Self-Oxidation Control Performance of Fluorescein, Rose Bengal, and Triphenylamine Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 26174-26183.	3.1	4
113	Chapter 7. Artificial Photosynthesis with Inorganic Particles. RSC Energy and Environment Series, 2018, , 214-280.	0.5	4
114	A Simple Laboratory Method to Pattern Subâ€Millimeter Features of Conductive Films of Gold and Indium Tin Oxide. Instrumentation Science and Technology, 2007, 35, 53-58.	1.8	2
115	Nanoparticle-Assembled Catalysts for Photochemical Water Splitting. , 0, , 507-521.		2
116	The Hydrogen Evolution Reaction: Water Reduction Photocatalysis—Improved Niobate Nanoscroll Photocatalysts for Partial Water Splitting. Springer Theses, 2014, , 9-25.	0.1	2
117	Photocatalytic water splitting with nano-K 4 Nb 6 O 17. Proceedings of SPIE, 2010, , .	0.8	1
118	Complete Water Splitting with Multi-Component Catalysts: Proposed Mechanism of Charge Transport in NiOx Loaded SrTiO3 Photocatalyst for Complete Water Splitting. Springer Theses, 2014, , 53-66.	0.1	1
119	Crystal structure of the Ni(II)-complex of a redox switched crown ether. Polyhedron, 1999, 18, 1957-1960.	2.2	0
120	The Oxygen Evolution Reaction: Water Oxidation Photocatalysis—Photocatalytic Water Oxidation with Suspended alpha-Fe2O3 Particles—Effects of Nanoscaling. Springer Theses, 2014, , 27-37.	0.1	0
121	(Invited) Surface Photovoltage Spectroscopy Observes Junctions and Carrier Separation in Gallium Nitride Nanowire Arrays for Overall Water-Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 707-707.	0.0	0
122	Overall Photocatalytic Water Splitting with Suspended NiO-SrTiO3 Nanocrystals. Springer Theses, 2014, , 39-51.	0.1	0
123	(Invited) Observing Photochemical Charge Transport at Particle Based Tandem Junctions for Overall Water Splitting. ECS Meeting Abstracts, 2016, , .	0.0	0
124	(Invited) Quantum Confinement Controls Effective Band Gap, Photocatalytic H2 Evolution and Photovoltage in CdSe Nanocrystals. ECS Meeting Abstracts, 2018, , .	0.0	0
125	Perovskite-type Oxynitrides LaTaO2N and LaTaON2 – Synthetic Strategies. , 0, , .		0
126	(Invited) Using Surface Photovoltage Spectroscopy to Observe Photovoltage Generation at the Interfaces of Cu2o, BiVO4, and Rh:SrTiO3 Particles. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
127	(Invited) Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles. ECS Meeting Abstracts, 2019, , .	0.0	0
128	(Invited) Ferroelectric Photovoltage Enhancement in Chromium-Doped SrTiO3 nanocrystal Photocatalysts for Hydrogen Evolution. ECS Meeting Abstracts, 2020, MA2020-01, 1723-1723.	0.0	0
129	(Invited)ÂThermodynamic Aspects of Devices for Solar Energy and Chemical Conversions. ECS Meeting Abstracts, 2018, MA2018-01, 1860-1860.	0.0	0
130	Perovskite-type Oxynitrides LaTaO2N and LaTaON2 $\hat{a} \in \mathbb{C}$ Synthetic Strategies. , 0, , .		0
131	(Invited) Fermi Level Pinning Controls Photochemical Charge Separation in Particles of n-SrTiO ₃ , n-SrTiO ₃ :Al, and p-GaAs:Te. ECS Meeting Abstracts, 2020, MA2020-02, 3087-3087.	0.0	0
132	(Invited) Surface Photovoltage Spectroscopy on BiVO ₄ , Gallium Phosphide, and CuGa ₃ Se ₅ Photoelectrodes in Contact with Aqueous Electrolytes. ECS Meeting Abstracts, 2022, MA2022-01, 1575-1575.	0.0	0