Yiqing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6839365/publications.pdf Version: 2024-02-01

759233 642732 29 550 12 23 citations h-index g-index papers 29 29 29 421 docs citations all docs times ranked citing authors

ΥιοιΝς Υιι

#	Article	IF	CITATIONS
1	Investigation of the Anisotropy of 4H-SiC Materials in Nanoindentation and Scratch Experiments. Materials, 2022, 15, 2496.	2.9	7
2	Coupling of double grains enforces the grinding process in vibration-assisted scratch: Insights from molecular dynamics. Journal of Materials Processing Technology, 2022, 304, 117551.	6.3	21
3	Comparison of Vibration-Assisted Scratch Characteristics of SiC Polytypes (3C-, 4H- and 6H-SiC). Micromachines, 2022, 13, 640.	2.9	6
4	Investigation on diamond damaged process during a single-scratch of single crystal silicon carbide. Wear, 2021, 486-487, 204099.	3.1	4
5	Mechanism of the scratching of monocrystalline silicon carbide with a diamond grit at different wear stages. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, , 095440542093979.	2.4	5
6	Comparison study of Fe-based matrix composites reinforced with Ti-coated and Mo-coated SiC particles. Materials Chemistry and Physics, 2018, 204, 154-162.	4.0	10
7	Spark plasma coating of tungsten-coated SiC particles. Powder Technology, 2017, 310, 282-286.	4.2	7
8	Investigation of Ti coatings on cubic boron nitride (cBN) grits by discharge treatment in spark plasma sintering system. Advanced Powder Technology, 2017, 28, 2281-2287.	4.1	6
9	Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the FEM and SPH. International Journal of Machine Tools and Manufacture, 2017, 120, 49-60.	13.4	54
10	Study of Ti-coated diamond grits prepared by spark plasma coating. Diamond and Related Materials, 2017, 77, 72-78.	3.9	22
11	Preparation of the gradient Mo layers on diamond grits by spark plasma sintering and their effect on Fe-based matrix diamond composites. Journal of Alloys and Compounds, 2017, 695, 70-75.	5.5	18
12	SPH and FE coupled 3D simulation of monocrystal SiC scratching by single diamond grit. International Journal of Refractory Metals and Hard Materials, 2017, 64, 279-293.	3.8	48
13	Reactive sintering cBN-Ti-Al composites by spark plasma sintering. Diamond and Related Materials, 2016, 69, 138-143.	3.9	38
14	Fabrication of bulk nano-SiC via in-situ reaction of core–shell structural SiC@C with Si using high pressure high temperature sintering method. Materials Letters, 2015, 144, 69-73.	2.6	6
15	Effect of Gradient TiC–Ti5Si3–TiSi2 barrier layer on SiC in SiC–borosilicate glass composites. Surface and Coatings Technology, 2015, 275, 349-356.	4.8	5
16	Inhibiting the oxidation of diamond during preparing the vitrified dental grinding tools by depositing a ZnO coating using direct urea precipitation method. Materials Science and Engineering C, 2015, 53, 23-28.	7.3	18
17	Avoiding the oxidation of SiC in SiC-borosilicate glass composites by adding zinc. Corrosion Science, 2015, 90, 413-419.	6.6	6
18	Fabrication of diamond–SiC–TiC composite by a spark plasma sintering-reactive synthesis method. Journal of the European Ceramic Society, 2015, 35, 69-76.	5.7	20

YIQING YU

#	Article	IF	CITATIONS
19	Preparing porous diamond composites via electrophoretic deposition of diamond particles on foam nickel substrate. Materials Letters, 2015, 138, 52-55.	2.6	9
20	Promoting oxidation-resistance property of SiC particles by adding Ti powder into SiC-brosilicate glass composites. Materials Letters, 2014, 134, 34-37.	2.6	2
21	Image mosaic coupled detection of grinding wheel topographies. International Journal of Abrasive Technology, 2013, 6, 147.	0.2	7
22	Vertical Spindle Grinding of Si and Granite with a New Abrasive Disk. Advances in Mechanical Engineering, 2013, 5, 768104.	1.6	0
23	Performance of coated diamonds in different metal matrices. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2007, 43, 139.	0.5	0
24	Sawing performance of diamond with alloy coatings. Surface and Coatings Technology, 2005, 198, 459-463.	4.8	16
25	Analysis of Cutting Forces in the Deep Sawing of Granite with a Diamond Saw-blade(Superabrasive/new) Tj ETQq1 21st Century LEM21, 2005, 2005.1, 205-208.	1 0.7843 0.0	14 rgBT /O 2
26	Force ratio in the circular sawing of granites with a diamond segmented blade. Journal of Materials Processing Technology, 2003, 139, 281-285.	6.3	67
27	Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear, 2003, 255, 1421-1426.	3.1	121
28	XPS and SEM characterization of wheel/workpiece interface in grinding of superalloy. Surface and Interface Analysis, 2002, 33, 343-350.	1.8	20
29	Adhesion at abrasive-Ti6Al4V interface with elevated grinding temperatures. Journal of Materials Science Letters, 2002, 21, 1293-1295.	0.5	5