
Dominic Bresser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-ion conducting polymer electrolyte for Li∣ LiNi0.6Mn0.2Co0.2O2 batteries—impact of the anodic cutoff voltage and ambient temperature. Journal of Solid State Electrochemistry, 2022, 26, 97-102.	1.2	10
2	High-Li+-fraction ether-side-chain pyrrolidinium–asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. Chemical Engineering Journal, 2022, 430, 132693.	6.6	15
3	Block copolymers as (single-ion conducting) lithium battery electrolytes. Nanotechnology, 2022, 33, 062002.	1.3	11
4	Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nature Materials, 2022, 21, 325-330.	13.3	26
5	Photoâ€Crossâ€Linked Singleâ€Ion Conducting Polymer Electrolyte for Lithiumâ€Metal Batteries. Macromolecular Rapid Communications, 2022, 43, e2100820.	2.0	12
6	Diagnosis tools for humidity-born surface contaminants on Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for lithium batteries. Journal of Power Sources, 2022, 525, 231111.	4.0	7
7	Polysiloxaneâ€Based Singleâ€ion Conducting Polymer Blend Electrolyte Comprising Smallâ€Molecule Organic Carbonates for Highâ€Energy and Highâ€Power Lithiumâ€Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	53
8	Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes. Inorganics, 2022, 10, 46.	1.2	5
9	Quantification of charge compensation in lithium- and manganese-rich Li-ion cathode materials by x-ray spectroscopies. Materials Today Physics, 2022, 24, 100687.	2.9	2
10	Comprehensive Approach to Investigate the Deâ€/Lithiation Mechanism of Feâ€Doped SnO ₂ as Lithiumâ€Ion Anode Material. Advanced Sustainable Systems, 2022, 6, .	2.7	9
11	Influence of Polymer Backbone Fluorination on the Electrochemical Behavior of Single-Ion Conducting Multiblock Copolymer Electrolytes. ACS Macro Letters, 2022, 11, 982-990.	2.3	5
12	Synergistic electrolyte additives for enhancing the performance of high-voltage lithium-ion cathodes in half-cells and full-cells. Journal of Power Sources, 2021, 482, 228975.	4.0	29
13	Organic Liquid Crystals as Singleâ€ion Li ⁺ Conductors. ChemSusChem, 2021, 14, 655-661.	3.6	8
14	ZnOâ€Based Conversion/Alloying Negative Electrodes for Lithiumâ€Ion Batteries: Impact of Mixing Intimacy. Energy Technology, 2021, 9, 2001084.	1.8	7
15	Impact of the Transition Metal Dopant in Zinc Oxide Lithiumâ€lon Anodes on the Solid Electrolyte Interphase Formation. Small Methods, 2021, 5, e2001021.	4.6	17
16	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
17	Effect of the Secondary Rutile Phase in Singleâ€Step Synthesized Carbonâ€Coated Anatase TiO ₂ Nanoparticles as Lithiumâ€Ion Anode Material. Energy Technology, 2021, 9, 2001067.	1.8	7
18	An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes. ACS Energy Letters, 2021, 6, 915-924.	8.8	21

#	Article	IF	CITATIONS
19	Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes. Journal of the Electrochemical Society, 2021, 168, 030503.	1.3	8
20	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO ₂ . Journal of Physical Chemistry C, 2021, 125, 8947-8958.	1.5	5
21	Optimizing the Mg Doping Concentration of Na ₃ V _{2–<i>x</i>} Mg _{<i>x</i>} (PO ₄) ₂ F _{3< for Enhanced Sodiation/Desodiation Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 6962-6971.}	/syb>/C	25
22	Isovalent vs. aliovalent transition metal doping of zinc oxide lithium-ion battery anodes — in-depth investigation by ex situ and operando X-ray absorption spectroscopy. Materials Today Chemistry, 2021, 20, 100478.	1.7	10
23	Lithium Phosphonate Functionalized Polymer Coating for Highâ€Energy Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ with Superior Performance at Ambient and Elevated Temperatures. Advanced Functional Materials, 2021, 31, 2105343.	7.8	42
24	Gravureâ€Printed Conversion/Alloying Anodes for Lithiumâ€lon Batteries. Energy Technology, 2021, 9, 2100315.	1.8	10
25	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
26	Initial lithiation of carbon-coated zinc ferrite anodes studied by in-situ X-ray absorption spectroscopy. Radiation Physics and Chemistry, 2020, 175, 108468.	1.4	5
27	Structure rearrangements induced by lithium insertion in metal alloying oxide mixed spinel structure studied by x-ray absorption near-edge spectroscopy. Journal of Physics and Chemistry of Solids, 2020, 136, 109172.	1.9	14
28	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 155-164.	2.4	18
29	Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium―and Sodium―on Batteries. Advanced Energy Materials, 2020, 10, 1902485.	10.2	511
30	Tailoring the Charge/Discharge Potentials and Electrochemical Performance of SnO ₂ Lithiumâ€lon Anodes by Transition Metal Coâ€Doping. Batteries and Supercaps, 2020, 3, 284-292.	2.4	21
31	Unveiling and Amplifying the Benefits of Carbon-Coated Aluminum Current Collectors for Sustainable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2020, 3, 218-230.	2.5	25
32	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
33	Mechanistic Insights into the Lithiation and Delithiation of Iron-Doped Zinc Oxide: The Nucleation Site Model. ACS Applied Materials & Interfaces, 2020, 12, 8206-8218.	4.0	17
34	High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy, 2020, 77, 105129.	8.2	76
35	Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes. Journal of Power Sources, 2020, 473, 228583.	4.0	23
36	Determination of the Volume Changes Occurring for Conversion/Alloying-Type Li-Ion Anodes upon Lithiation/Delithiation. Journal of Physical Chemistry Letters, 2020, 11, 8238-8245.	2.1	12

#	Article	IF	CITATIONS
37	Understanding the Role of Nanoparticles in PEO-Based Hybrid Polymer Electrolytes for Solid-State Lithium–Polymer Batteries. Journal of Physical Chemistry C, 2020, 124, 27907-27915.	1.5	20
38	Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000783.	10.2	30
39	The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 2020, 4, 5387-5416.	2.5	608
40	Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 32797-32805.	4.0	32
41	Lithiumâ€Ion Batteries: Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€Ion Batteries (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070112.	10.2	1
42	Coâ€Crosslinked Waterâ€Soluble Biopolymers as a Binder for Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Graphite Lithiumâ€Ion Full Cells. ChemSusChem, 2020, 13, 2650-2660.	3.6	26
43	A Comparative Review of Electrolytes for Organicâ€Materialâ€Based Energyâ€Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem, 2020, 13, 2205-2219.	3.6	64
44	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 129-129.	2.4	2
45	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073.	4.0	109
46	Sodium Biphenyl as Anolyte for Sodium–Seawater Batteries. Advanced Functional Materials, 2020, 30, 2001249.	7.8	24
47	Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Materials Today, 2020, 39, 127-136.	8.3	37
48	Partially Oxidized Cellulose grafted with Polyethylene Glycol mono-Methyl Ether (m-PEG) as Electrolyte Material for Lithium Polymer Battery. Carbohydrate Polymers, 2020, 240, 116339.	5.1	16
49	Scalable Synthesis of Microsized, Nanocrystalline Zn _{0.9} Fe _{0.1} O Secondary Particles and Their Use in Zn _{0.9} Fe _{0.1} O /LiNi _{0.5} Mn _{1.5} O ₄ Lithiumâ€Ion Full Cells, ChemSusChem, 2020, 13, 3504-3513.	3.6	14
50	4-V flexible all-solid-state lithium polymer batteries. Nano Energy, 2019, 64, 103986.	8.2	39
51	Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi _{0.5} Mn _{1.5} O ₄ Cathodes in the Presence of LiBOB. International Journal of Electrochemistry, 2019, 2019, 1-7.	2.4	17
52	Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries. ACS Nano, 2019, 13, 9511-9519.	7.3	48
53	Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 42049-42056.	4.0	18
54	Critical Evaluation of the Use of 3D Carbon Networks Enhancing the Long-Term Stability of Lithium Metal Anodes. Frontiers in Materials, 2019, 6, .	1.2	2

#	Article	IF	CITATIONS
55	In Situ Investigation of Layered Oxides with Mixed Structures for Sodiumâ€ŀon Batteries. Small Methods, 2019, 3, 1900239.	4.6	20
56	Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 779-792.	1.7	129
57	Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodiumâ€ion Batteries. ChemSusChem, 2019, 12, 2302-2309.	3.6	48
58	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	8.3	537
59	Probing the 3â€step Lithium Storage Mechanism in CH ₃ NH ₃ PbBr ₃ Perovskite Electrode by <i>Operando</i> â€XRD Analysis. ChemElectroChem, 2019, 6, 456-460.	1.7	22
60	Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. Journal of Power Sources, 2019, 412, 398-407.	4.0	100
61	Inâ€Situ Electrochemical SHINERS Investigation of SEI Composition on Carbonâ€Coated Zn _{0.9} Fe _{0.1} O Anode for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 168-177.	2.4	32
62	Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources, 2018, 382, 176-178.	4.0	184
63	Comparative Analysis of Aqueous Binders for High-Energy Li-Rich NMC as a Lithium-Ion Cathode and the Impact of Adding Phosphoric Acid. ACS Applied Materials & Interfaces, 2018, 10, 17214-17222.	4.0	52
64	Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochimica Acta, 2018, 277, 100-109.	2.6	36
65	Complementary Strategies Toward the Aqueous Processing of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Lithiumâ€Ion Cathodes. ChemSusChem, 2018, 11, 562-573.	3.6	70
66	Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy and Environmental Science, 2018, 11, 3096-3127.	15.6	379
67	Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nature Communications, 2018, 9, 5320.	5.8	71
68	Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage. Journal of Power Sources, 2018, 402, 263-271.	4.0	99
69	MnPO4 -Coated Li-NCM: MnPO4 -Coated Li(Ni0.4 Co0.2 Mn0.4)O2 for Lithium(-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics (Adv. Energy Mater. 27/2018). Advanced Energy Materials, 2018, 8, 1870123.	10.2	9
70	Conversion/alloying lithium-ion anodes – enhancing the energy density by transition metal doping. Sustainable Energy and Fuels, 2018, 2, 2601-2608.	2.5	41
71	Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy and Environmental Science, 2018, 11, 3298-3309.	15.6	167
72	Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage. ACS Nano, 2018, 12, 7220-7231.	7.3	234

#	Article	IF	CITATIONS
73	MnPO ₄ â€Coated Li(Ni _{0.4} Co _{0.2} Mn _{0.4})O ₂ for Lithium(â€lon) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics. Advanced Energy Materials, 2018, 8, 1801573.	10.2	87
74	Structural and Electrochemical Characterization of Zn1â^'xFexO—Effect of Aliovalent Doping on the Li+ Storage Mechanism. Materials, 2018, 11, 49.	1.3	25
75	From an Enhanced Understanding to Commercially Viable Electrodes: The Case of PTCLi ₄ as Sustainable Organic Lithiumâ€Ion Anode Material. Advanced Sustainable Systems, 2017, 1, 1600032.	2.7	31
76	Unveiling the Ion Conduction Mechanism in Imidazolium-Based Poly(ionic liquids): A Comprehensive Investigation of the Structure-to-Transport Interplay. Macromolecules, 2017, 50, 4309-4321.	2.2	41
77	Manganese silicate hollow spheres enclosed in reduced graphene oxide as anode for lithium-ion batteries. Electrochimica Acta, 2017, 258, 535-543.	2.6	46
78	Iron-Doped ZnO for Lithium-Ion Anodes: Impact of the Dopant Ratio and Carbon Coating Content. Journal of the Electrochemical Society, 2017, 164, A6123-A6130.	1.3	19
79	Elucidating the Impact of Cobalt Doping on the Lithium Storage Mechanism in Conversion/Alloyingâ€Type Zinc Oxide Anodes. ChemElectroChem, 2016, 3, 1311-1319.	1.7	34
80	Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochimica Acta, 2016, 203, 109-116.	2.6	32
81	Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy and Environmental Science, 2016, 9, 3348-3367.	15.6	202
82	Safer Electrolytes for Lithiumâ€lon Batteries: State of the Art and Perspectives. ChemSusChem, 2015, 8, 2154-2175.	3.6	641
83	Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review, 2015, 59, 34-44.	0.5	67
84	Carbon-Coated Anatase TiO ₂ Nanotubes for Li- and Na-Ion Anodes. Journal of the Electrochemical Society, 2015, 162, A3013-A3020.	1.3	80
85	Nanocrystalline TiO ₂ (B) as Anode Material for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3052-A3058.	1.3	108
86	Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithiumâ€Ion Batteries. Macromolecular Rapid Communications, 2015, 36, 1075-1082.	2.0	30
87	Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries. Electrochimica Acta, 2015, 161, 159-170.	2.6	30
88	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage. , 2015, , 213-289.		6
89	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage:. , 2015, , 125-211.		10
90	Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. Journal of Power Sources, 2015, 294, 406-413.	4.0	11

#	Article	IF	CITATIONS
91	Scaling up "Nano―Li ₄ Ti ₅ O ₁₂ for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. Journal of the Electrochemical Society, 2015, 162, A2331-A2338.	1.3	32
92	Interphase Evolution of a Lithium-Ion/Oxygen Battery. ACS Applied Materials & Interfaces, 2015, 7, 22638-22643.	4.0	50
93	Insights into the Effect of Iron and Cobalt Doping on the Structure of Nanosized ZnO. Inorganic Chemistry, 2015, 54, 9393-9400.	1.9	38
94	Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization. Journal of Physical Chemistry C, 2015, 119, 22404-22414.	1.5	30
95	Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. Journal of Power Sources, 2015, 299, 398-402.	4.0	99
96	Unfolding the Mechanism of Sodium Insertion in Anatase TiO ₂ Nanoparticles. Advanced Energy Materials, 2015, 5, 1401142.	10.2	293
97	Lithiumâ€Ion Batteries: ZnFe ₂ O ₄ â€C/LiFePO ₄ â€CNT: A Novel Highâ€Powe Lithiumâ€Ion Battery with Excellent Cycling Performance (Adv. Energy Mater. 10/2014). Advanced Energy Materials, 2014, 4, .	er 10.2	5
98	Rechargeable-hybrid-seawater fuel cell. NPG Asia Materials, 2014, 6, e144-e144.	3.8	68
99	Anatase TiO2 nanoparticles for high power sodium-ion anodes. Journal of Power Sources, 2014, 251, 379-385.	4.0	297
100	Challenges of "Going Nano― Enhanced Electrochemical Performance of Cobalt Oxide Nanoparticles by Carbothermal Reduction and In Situ Carbon Coating. ChemPhysChem, 2014, 15, 2177-2185.	1.0	38
101	An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based Electrolyte. Nano Letters, 2014, 14, 6572-6577.	4.5	200
102	Probing Lithiation Kinetics of Carbon-Coated ZnFe ₂ O ₄ Nanoparticle Battery Anodes. Journal of Physical Chemistry C, 2014, 118, 6069-6076.	1.5	62
103	A New, High Energy Sn–C/Li[Li _{0.2} Ni _{0.4/3} Co _{0.4/3} Mn _{1.6/3}]O ₂ Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 12956-12961.	4.0	38
104	Enabling LiTFSlâ€based Electrolytes for Safer Lithiumâ€lon Batteries by Using Linear Fluorinated Carbonates as (Co)Solvent. ChemSusChem, 2014, 7, 2939-2946.	3.6	76
105	ZnFe ₂ O ₄ â€C/LiFePO ₄ â€CNT: A Novel Highâ€Power Lithiumâ€Ion Battery with Excellent Cycling Performance. Advanced Energy Materials, 2014, 4, 1-9.	10.2	287
106	Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries. Dalton Transactions, 2014, 43, 15013-15021.	1.6	57
107	Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries. Journal of Power Sources, 2014, 248, 852-860.	4.0	15
108	Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128, 163-171.	2.6	84

#	Article	IF	CITATIONS
109	Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept. Journal of Electrochemical Science and Technology, 2014, 5, 37-44.	0.9	21
110	Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5ÂV LiNi0.4Mn1.6O4 cathodes. Journal of Power Sources, 2013, 236, 39-46.	4.0	90
111	Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236, 87-94.	4.0	88
112	Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material. Chemistry of Materials, 2013, 25, 4977-4985.	3.2	165
113	Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chemical Communications, 2013, 49, 10545.	2.2	467
114	Polyacrylonitrile Block Copolymers for the Preparation of a Thin Carbon Coating Around TiO ₂ Nanorods for Advanced Lithiumâ€Ion Batteries. Macromolecular Rapid Communications, 2013, 34, 1693-1700.	2.0	31
115	Carbon coated lithium sulfide particles for lithium battery cathodes. Journal of Power Sources, 2013, 235, 220-225.	4.0	84
116	Carbon Coated ZnFe ₂ O ₄ Nanoparticles for Advanced Lithiumâ€lon Anodes. Advanced Energy Materials, 2013, 3, 513-523.	10.2	312
117	Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi0.4Mn1.6O4 batteries. Journal of Power Sources, 2013, 238, 17-20.	4.0	34
118	Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery. Journal of Power Sources, 2013, 221, 419-426.	4.0	83
119	The importance of "going nano―for high power battery materials. Journal of Power Sources, 2012, 219, 217-222.	4.0	65
120	Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. Journal of Power Sources, 2012, 206, 301-309.	4.0	81