
Tom P Rippeth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6838741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of acoustic Doppler current profiler (ADCP) motion on structure function estimates of turbulent kinetic energy dissipation rate. Ocean Science, 2022, 18, 169-192.	3.4	1
2	Turbulent Mixing in a Changing Arctic Ocean. Oceanography, 2022, , .	1.0	7
3	Anthropogenic Mixing in Seasonally Stratified Shelf Seas by Offshore Wind Farm Infrastructure. Frontiers in Marine Science, 2022, 9, .	2.5	22
4	Increasing Nutrient Fluxes and Mixing Regime Changes in the Eastern Arctic Ocean. Geophysical Research Letters, 2022, 49, .	4.0	6
5	Turbulent Mixing and the Formation of an Intermediate Nepheloid Layer Above the Siberian Continental Shelf Break. Geophysical Research Letters, 2021, 48, e2021GL092988.	4.0	13
6	Shelf Seas Baroclinic Energy Loss: Pycnocline Mixing and Bottom Boundary Layer Dissipation. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016528.	2.6	6
7	Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins. Geophysical Research Letters, 2020, 47, e2020GL088083.	4.0	32
8	Intensification of Near‧urface Currents and Shear in the Eastern Arctic Ocean. Geophysical Research Letters, 2020, 47, e2020GL089469.	4.0	32
9	Weakening of Cold Halocline Layer Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean. Journal of Climate, 2020, 33, 8107-8123.	3.2	82
10	Evolution of Oceanic Near-Surface Stratification in Response to an Autumn Storm. Journal of Physical Oceanography, 2019, 49, 2961-2978.	1.7	10
11	The Contribution of Surface and Submesoscale Processes to Turbulence in the Open Ocean Surface Boundary Layer. Journal of Advances in Modeling Earth Systems, 2019, 11, 4066-4094.	3.8	44
12	Global Tidal Impacts of Large‣cale Ice Sheet Collapses. Journal of Geophysical Research: Oceans, 2017, 122, 8354-8370.	2.6	30
13	Correcting Surface Wave Bias in Structure Function Estimates of Turbulent Kinetic Energy Dissipation Rate. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2257-2273.	1.3	15
14	Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study). Geophysical Research Letters, 2017, 44, 12,349.	4.0	36
15	Windâ€driven mixing at intermediate depths in an iceâ€free Arctic Ocean. Geophysical Research Letters, 2016, 43, 9749-9756.	4.0	47
16	Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 2015, 8, 191-194.	12.9	111
17	Ocean nutrient pathways associated with the passage of a storm. Global Biogeochemical Cycles, 2015, 29, 1179-1189.	4.9	34
18	Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water. Geophysical Research Letters, 2014, 41, 7950-7956.	4.0	16

Том Р Пірретн

#	Article	IF	CITATIONS
19	Impact of vertical mixing on sea surface <i>p</i> CO ₂ in temperate seasonally stratified shelf seas. Journal of Geophysical Research: Oceans, 2014, 119, 3868-3882.	2.6	17
20	Windâ€driven nutrient pulses to the subsurface chlorophyll maximum in seasonally stratified shelf seas. Geophysical Research Letters, 2013, 40, 5467-5472.	4.0	53
21	The maintenance of the subsurface chlorophyll maximum in the stratified western Irish Sea. Limnology & Oceanography Fluids & Environments, 2013, 3, 61-73.	1.7	20
22	Shear at the Base of the Oceanic Mixed Layer Generated by Wind Shear Alignment. Journal of Physical Oceanography, 2013, 43, 1798-1810.	1.7	21
23	Intermittent Intense Turbulent Mixing under Ice in the Laptev Sea Continental Shelf. Journal of Physical Oceanography, 2011, 41, 531-547.	1.7	58
24	The structure of dissipation in the western Irish Sea front. Journal of Marine Systems, 2009, 77, 428-440.	2.1	11
25	The diapcynal nutrient flux and shear-induced diapcynal mixing in the seasonally stratified western Irish Sea. Continental Shelf Research, 2009, 29, 1580-1587.	1.8	60
26	Tidal mixing and the Meridional Overturning Circulation from the Last Glacial Maximum. Geophysical Research Letters, 2009, 36, .	4.0	39
27	Generation of Bulk Shear Spikes in Shallow Stratified Tidal Seas. Journal of Physical Oceanography, 2009, 39, 969-985.	1.7	56
28	Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Progress in Oceanography, 2008, 76, 399-442.	3.2	113
29	An investigation of internal mixing in a seasonally stratified shelf sea. Journal of Geophysical Research, 2008, 113, .	3.3	55
30	Impact of seaâ€level rise over the last deglacial transition on the strength of the continental shelf CO ₂ pump. Geophysical Research Letters, 2008, 35, .	4.0	15
31	Springâ€neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnology and Oceanography, 2007, 52, 1735-1747.	3.1	153
32	A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophysical Research Letters, 2006, 33, .	4.0	145
33	Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: Relative contributions of resuspension and disaggregation. Continental Shelf Research, 2006, 26, 2019-2028.	1.8	39
34	Mixing in seasonally stratified shelf seas: a shifting paradigm. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 2837-2854.	3.4	70
35	Thermocline mixing in summer stratified continental shelf seas. Geophysical Research Letters, 2005, 32, .	4.0	58
36	Evolution and distribution of TKE production and dissipation within stratified flow over topography. Geophysical Research Letters, 2005, 32, .	4.0	44

Том Р Пірретн

#	Article	IF	CITATIONS
37	Spatial Variability of Diapycnal Mixing and Turbulent Dissipation Rates in a Stagnant Fjord Basin. Journal of Physical Oceanography, 2004, 34, 1679-1691.	1.7	18
38	Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited. Journal of Physical Oceanography, 2003, 33, 1889-1901.	1.7	99
39	Reynolds Stress and Turbulent Energy Production in a Tidal Channel. Journal of Physical Oceanography, 2002, 32, 1242-1251.	1.7	126
40	Observations of the internal tide and associated mixing across the Malin Shelf. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	62
41	Current oscillations in the diurnal–inertial band on the Catalonian shelf in spring. Continental Shelf Research, 2002, 22, 247-265.	1.8	58
42	The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons. Continental Shelf Research, 2002, 22, 1615-1628.	1.8	95
43	Dissipation of Tidal Energy and Associated Mixing in a Wide Fjord. Environmental Fluid Mechanics, 2002, 2, 219-240.	1.6	24
44	Phytoplankton distribution and survival in the thermocline. Limnology and Oceanography, 2001, 46, 486-496.	3.1	171
45	The Cycle of Turbulent Dissipation in the Presence of Tidal Straining. Journal of Physical Oceanography, 2001, 31, 2458-2471.	1.7	154
46	Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. Journal of Geophysical Research, 2000, 105, 8687-8705.	3.3	111
47	Comparing the performance of the Mellor-Yamada and the κ-ε two-equation turbulence models. Journal of Geophysical Research, 1998, 103, 10543-10554.	3.3	158
48	Diurnal signals in vertical motions on the Hebridean Shelf. Limnology and Oceanography, 1998, 43, 1690-1696.	3.1	29
49	The Vertical Structure of Turbulent Dissipation in Shelf Seas. Journal of Physical Oceanography, 1996, 26, 1579-1590.	1.7	197