List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6838471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 8970-8980.	10.3	1,609
2	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	27.8	1,451
3	Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11, 726-732.	31.4	984
4	Study on the stability of CH ₃ NH ₃ PbI ₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 705-710.	10.3	963
5	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	12.8	620
6	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	30.8	535
7	Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2, .	39.5	441
8	Leadâ€Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2016, 55, 15012-15016.	13.8	426
9	Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 2018, 9, 2179.	12.8	426
10	Leadâ€Free Halide Rb ₂ CuBr ₃ as Sensitive Xâ€Ray Scintillator. Advanced Materials, 2019, 31, e1904711.	21.0	380
11	Allâ€Inorganic Bismuthâ€Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Advanced Functional Materials, 2018, 28, 1704446.	14.9	375
12	Highly Efficient Blueâ€Emitting Biâ€Doped Cs ₂ SnCl ₆ Perovskite Variant: Photoluminescence Induced by Impurity Doping. Advanced Functional Materials, 2018, 28, 1801131.	14.9	358
13	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	13.7	347
14	Passivated Single-Crystalline CH ₃ NH ₃ PbI ₃ Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Letters, 2016, 16, 7446-7454.	9.1	324
15	Cs ₂ AgInCl ₆ Double Perovskite Single Crystals: Parity Forbidden Transitions and Their Application For Sensitive and Fast UV Photodetectors. ACS Photonics, 2018, 5, 398-405.	6.6	317
16	Circularly polarized light detection using chiral hybrid perovskite. Nature Communications, 2019, 10, 1927.	12.8	313
17	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x3 with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.</i>	19.5	298
18	Efficient and Reabsorptionâ€Free Radioluminescence in Cs ₃ Cu ₂ I ₅ Nanocrystals with Selfâ€Trapped Excitons. Advanced Science, 2020, 7, 2000195.	11.2	282

#	Article	IF	CITATIONS
19	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	19.5	277
20	High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Scientific Reports, 2015, 5, 16563.	3.3	270
21	Inorganic CsPbl ₃ Perovskiteâ€Based Solar Cells: A Choice for a Tandem Device. Solar Rrl, 2017, 1, 1700048.	5.8	268
22	Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nature Communications, 2019, 10, 1989.	12.8	252
23	Addictive-assisted construction of all-inorganic CsSnIBr ₂ mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 2016, 4, 17104-17110.	10.3	250
24	Metal Halide Perovskites for X-Ray Detection and Imaging. Matter, 2021, 4, 144-163.	10.0	222
25	Hotâ€Pressed CsPbBr ₃ Quasiâ€Monocrystalline Film for Sensitive Direct Xâ€ray Detection. Advanced Materials, 2019, 31, e1904405.	21.0	213
26	Stable α/l´ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chemical Science, 2017, 8, 800-805.	7.4	199
27	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20105-20111.	10.3	194
28	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	19.5	192
29	Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Advances, 2017, 7, 17473-17479.	3.6	178
30	Photophysics in Cs ₃ Cu ₂ X ₅ (X = Cl, Br, or I): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization. Chemistry of Materials, 2020, 32, 3462-3468.	6.7	177
31	Photophysical Pathways in Highly Sensitive Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Singleâ€Crystal Xâ€Ray Detectors. Advanced Materials, 2018, 30, e1804450.	21.0	173
32	Leadâ€Free Perovskite Variant Solid Solutions Cs ₂ Sn _{1–} <i>_x</i> Te <i>_x</i> Cl ₆ : Bright Luminescence and High Antiâ€Water Stability. Advanced Materials, 2020, 32, e2002443.	21.0	169
33	Cs ₂ PbI ₂ Cl ₂ , All-Inorganic Two-Dimensional Ruddlesden–Popper Mixed Halide Perovskite with Optoelectronic Response. Journal of the American Chemical Society, 2018, 140, 11085-11090.	13.7	167
34	Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 2017, 40, 336-344.	16.0	160
35	Surface Passivation of Bismuth-Based Perovskite Variant Quantum Dots To Achieve Efficient Blue Emission. Nano Letters, 2018, 18, 6076-6083.	9.1	157
36	Facile Synthesis of Iridium Nanocrystals with Well-Controlled Facets Using Seed-Mediated Growth. Journal of the American Chemical Society, 2014, 136, 10878-10881.	13.7	146

#	Article	IF	CITATIONS
37	Unveiling the Structural Descriptor of A ₃ B ₂ X ₉ Perovskite Derivatives toward Xâ€Ray Detectors with Low Detection Limit and High Stability. Advanced Functional Materials, 2020, 30, 1910648.	14.9	144
38	Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chemical Society Reviews, 2015, 44, 5806-5820.	38.1	141
39	All-Inorganic Copper Halide as a Stable and Self-Absorption-Free X-ray Scintillator. Journal of Physical Chemistry Letters, 2020, 11, 1873-1880.	4.6	131
40	Rare Earth Ionâ€Đoped CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2018, 6, 1700864.	7.3	130
41	Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy, 2016, 27, 87-94.	16.0	118
42	Controlled Cooling for Synthesis of Cs ₂ AgBiBr ₆ Single Crystals and Its Application for Xâ€Ray Detection. Advanced Optical Materials, 2019, 7, 1900491.	7.3	118
43	Highâ€Quality Cuboid CH ₃ NH ₃ PbI ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	14.9	115
44	Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications. ACS Applied Materials & Interfaces, 2019, 11, 31575-31584.	8.0	114
45	In Situ Regulating the Order–Disorder Phase Transition in Cs ₂ AgBiBr ₆ Single Crystal toward the Application in an Xâ€Ray Detector. Advanced Functional Materials, 2019, 29, 1900234.	14.9	114
46	Continuous and Scalable Production of Well-Controlled Noble-Metal Nanocrystals in Milliliter-Sized Droplet Reactors. Nano Letters, 2014, 14, 6626-6631.	9.1	113
47	Oriented-Structured CsCu ₂ I ₃ Film by Close-Space Sublimation and Nanoscale Seed Screening for High-Resolution X-ray Imaging. Nano Letters, 2021, 21, 1392-1399.	9.1	113
48	Tunable Color Temperatures and Efficient White Emission from Cs ₂ Ag _{1â^²} <i>_x</i> Na <i>_x</i> ln _{1â^²} <i>_{y< Double Perovskite Nanocrystals. Small, 2019, 15, e1903496.}</i>	:/subba@/i>	Bi⊲ 112 sub>y
49	Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 11688-11695.	10.3	103
50	Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12, 352-364.	3.7	103
51	Improved SnO ₂ Electron Transport Layers Solutionâ€Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Advanced Energy Materials, 2019, 9, 1900834.	19.5	100
52	Electrohydrodynamically Printed Highâ€Resolution Fullâ€Color Hybrid Perovskites. Advanced Functional Materials, 2019, 29, 1903294.	14.9	97
53	Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A, 2013, 1, 11735.	10.3	96
54	Highly Luminescent Zero-Dimensional Organic Copper Halides for X-ray Scintillation. Journal of Physical Chemistry Letters, 2021, 12, 6919-6926.	4.6	95

#	Article	IF	CITATIONS
55	Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy and Environmental Science, 2016, 9, 3424-3428.	30.8	94
56	Selfâ€Trapped Exciton to Dopant Energy Transfer in Rare Earth Doped Leadâ€Free Double Perovskite. Advanced Optical Materials, 2019, 7, 1901098.	7.3	94
57	Synthesis of Pt–Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction. Nano Letters, 2016, 16, 3850-3857.	9.1	86
58	TiO2Surface Modification and Characterization with Nanosized PbS in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 14406-14409.	2.6	85
59	Flexible Linearly Polarized Photodetectors Based on Allâ€Inorganic Perovskite CsPbI ₃ Nanowires. Advanced Optical Materials, 2018, 6, 1800679.	7.3	85
60	Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nature Communications, 2021, 12, 3348.	12.8	85
61	Rubidium Doping to Enhance Carrier Transport in CsPbBr ₃ Single Crystals for High-Performance X-Ray Detection. ACS Applied Materials & Interfaces, 2020, 12, 989-996.	8.0	84
62	X-ray scintillation in lead-free double perovskite crystals. Science China Chemistry, 2018, 61, 1581-1586.	8.2	79
63	Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters. Journal of Physical Chemistry Letters, 2020, 11, 1255-1260.	4.6	79
64	Ultrabright and Highly Efficient Allâ€inorganic Zeroâ€Dimensional Perovskite Scintillators. Advanced Optical Materials, 2021, 9, 2100460.	7.3	79
65	Metal Halide Scintillators with Fast and Selfâ€Absorptionâ€Free Defectâ€Bound Excitonic Radioluminescence for Dynamic Xâ€Ray Imaging. Advanced Functional Materials, 2021, 31, 2007921.	14.9	78
66	One-Dimensional All-Inorganic K ₂ CuBr ₃ with Violet Emission as Efficient X-ray Scintillators. ACS Applied Electronic Materials, 2020, 2, 2242-2249.	4.3	77
67	Printable CsPbBr ₃ perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale, 2020, 12, 2569-2577.	5.6	73
68	Highâ€Throughput Combinatorial Optimizations of Perovskite Lightâ€Emitting Diodes Based on Allâ€Vacuum Deposition. Advanced Functional Materials, 2019, 29, 1903607.	14.9	72
69	Efficient Blue Light Emitting Diodes Based On Europium Halide Perovskites. Advanced Materials, 2021, 33, e2101903.	21.0	71
70	Multifunctional MgO Layer in Perovskite Solar Cells. ChemPhysChem, 2015, 16, 1727-1732.	2.1	70
71	Aqueous Synthesis of Lead Halide Perovskite Nanocrystals with High Water Stability and Bright Photoluminescence. ACS Applied Materials & Interfaces, 2018, 10, 43915-43922.	8.0	67
72	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	3.7	65

#	Article	IF	CITATIONS
73	Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides A _{<i>x</i>} SnCl _{<i>y</i>} I _{<i>z</i>} (A = Cs, Rb). Chemistry of Materials, 2018, 30, 4847-4856.	6.7	65
74	Reversible luminescent humidity chromism of organic–inorganic hybrid PEA ₂ MnBr ₄ single crystals. Dalton Transactions, 2020, 49, 5662-5668.	3.3	65
75	Low-Temperature-Processed Amorphous Bi ₂ S ₃ Film as an Inorganic Electron Transport Layer for Perovskite Solar Cells. ACS Photonics, 2016, 3, 2122-2128.	6.6	63
76	Bismuth halide perovskite derivatives for direct X-ray detection. Journal of Materials Chemistry C, 2020, 8, 1239-1243.	5.5	59
77	Compact and Largeâ€Area Perovskite Films Achieved via Softâ€Pressing and Multiâ€Functional Polymerizable Binder for Flatâ€Panel Xâ€Ray Imager. Advanced Functional Materials, 2022, 32, 2110729.	14.9	58
78	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	10.3	57
79	Flexible Filterâ€Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. Advanced Functional Materials, 2017, 27, 1702360.	14.9	57
80	Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4721-4728.	10.3	57
81	Efficient Dual-Band White-Light Emission with High Color Rendering from Zero-Dimensional Organic Copper Iodide. ACS Applied Materials & Interfaces, 2021, 13, 22749-22756.	8.0	57
82	Morphology-controlled CH ₃ NH ₃ PbI ₃ films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity. Journal of Materials Chemistry A, 2015, 3, 22839-22845.	10.3	55
83	Highly Resolved Xâ€Ray Imaging Enabled by In(I) Doped Perovskiteâ€Like Cs ₃ Cu ₂ I ₅ Single Crystal Scintillator. Advanced Optical Materials, 2022, 10, .	7.3	54
84	A Droplet-Reactor System Capable of Automation for the Continuous and Scalable Production of Noble-Metal Nanocrystals. Nano Letters, 2018, 18, 3879-3884.	9.1	48
85	Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 2199-2206.	5.5	48
86	Embedding Cs ₃ Cu ₂ I ₅ Scintillators into Anodic Aluminum Oxide Matrix for Highâ€Resolution Xâ€Ray Imaging. Advanced Optical Materials, 2021, 9, 2101194.	7.3	48
87	Quasiâ€⊋D Perovskite Thick Film for Xâ€Ray Detection with Low Detection Limit. Advanced Functional Materials, 2022, 32, 2109458.	14.9	48
88	CH ₃ NH ₃ Pb _{1â^'x} Eu _x I ₃ mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability. RSC Advances, 2018, 8, 11095-11101.	3.6	45
89	Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators. ACS Applied Materials & Interfaces, 2022, 14, 14157-14164.	8.0	45
90	Highâ€Efficiency Formamidinium Lead Bromide Perovskite Nanocrystalâ€Based Lightâ€Emitting Diodes Fabricated via a Surface Defect Selfâ€Passivation Strategy. Advanced Optical Materials, 2020, 8, 1901390.	7.3	44

#	Article	IF	CITATIONS
91	ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy, 2013, 2, 40-48.	16.0	43
92	Progress of interface engineering in perovskite solar cells. Science China Materials, 2016, 59, 728-742.	6.3	43
93	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	10.3	43
94	Lead-free halide perovskites: a review of the structure–property relationship and applications in light emitting devices and radiation detectors. Journal of Materials Chemistry A, 2021, 9, 11931-11943.	10.3	42
95	Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7, 14867-14873.	5.5	38
96	Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Science China Materials, 2021, 64, 1427-1436.	6.3	38
97	Spectrally Stable Ultraâ€Pure Blue Perovskite Lightâ€Emitting Diodes Boosted by Squareâ€Wave Alternating Voltage. Advanced Optical Materials, 2020, 8, 1901094.	7.3	37
98	Inorganic halogen ligands in quantum dots: Iâ^', Brâ^', Clâr' and film fabrication through electrophoretic deposition. Physical Chemistry Chemical Physics, 2013, 15, 19595.	2.8	35
99	Controllable Cs <i>_x</i> FA _{1–<i>x</i>} PbI ₃ Single-Crystal Morphology via Rationally Regulating the Diffusion and Collision of Micelles toward High-Performance Photon Detectors. ACS Applied Materials & Interfaces, 2019, 11, 13812-13821.	8.0	35
100	Inorganic iodide ligands in ex situ PbS quantum dot sensitized solar cells with Iâ^'/I3â^' electrolytes. Journal of Materials Chemistry, 2012, 22, 16914.	6.7	34
101	A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy, 2019, 56, 391-399.	16.0	34
102	Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons. Journal of Semiconductors, 2020, 41, 052204.	3.7	34
103	Broadband emission of double perovskite Cs ₂ Na ₀₄ Ag ₀₆ In ₀₉₉₅ Bi ₀₀₀₅ Cl ₆ :1 for single-phosphor white-light-emitting diodes. Optics Letters, 2019, 44, 4757.	/In3.s up>2	¦+⊲¦∎up>
104	Inorganic antimony halide hybrids with broad yellow emissions. Science Bulletin, 2019, 64, 904-909.	9.0	31
105	Ultrastable Perovskite Nanocrystals in Allâ€Inorganic Transparent Matrix for Highâ€5peed Underwater Wireless Optical Communication. Advanced Optical Materials, 2021, 9, 2002239.	7.3	31
106	Polydisperse Spindleâ€&haped ZnO Particles with Their Packing Micropores in the Photoanode for Highly Efficient Quasiâ€&olid Dyeâ€&ensitized Solar Cells. Advanced Functional Materials, 2010, 20, 437-444.	14.9	29
107	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	8.0	28
108	Lead-free violet-emitting K2CuCl3 single crystal with high photoluminescence quantum yield. Organic Electronics, 2020, 86, 105903.	2.6	27

#	Article	IF	CITATIONS
109	Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light: Science and Applications, 2022, 11, 105.	16.6	27
110	Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 375-381.	3.9	26
111	Chemical Potential Diagram Guided Rational Tuning of Electrical Properties: A Case Study of CsPbBr ₃ for Xâ€ray Detection. Advanced Materials, 2022, 34, e2110252.	21.0	24
112	Perovskite semiconductors for ionizing radiation detection. EcoMat, 2022, 4, .	11.9	22
113	Mg doping in nanosheet-based spherical structured ZnO photoanode for quasi-solid dye-sensitized solar cells. RSC Advances, 2014, 4, 21294-21300.	3.6	21
114	Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO ₂ as a Buffer Layer. ACS Applied Materials & Interfaces, 2020, 12, 2566-2571.	8.0	21
115	Formamidinium Perovskitizers and Aromatic Spacers Synergistically Building Bilayer Dion–Jacobson Perovskite Photoelectric Bulk Crystals. ACS Applied Materials & Interfaces, 2022, 14, 11690-11698.	8.0	20
116	Recent progress in interface modification for dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1669-1678.	8.2	19
117	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	10.3	19
118	Insight into the CH ₃ NH ₃ PbI ₃ /C interface in hole-conductor-free mesoscopic perovskite solar cells. Nanoscale, 2016, 8, 14163-14170.	5.6	19
119	The role of interface between electron transport layer and perovskite in halogen migration and stabilizing perovskite solar cells with Cs ₄ SnO ₄ . Journal of Materials Chemistry A, 2018, 6, 23797-23804.	10.3	19
120	Room-temperature solution-processed amorphous NbO _x as an electron transport layer in high-efficiency photovoltaics. Journal of Materials Chemistry A, 2018, 6, 17882-17888.	10.3	19
121	Two-dimensional perovskites as sensitive strain sensors. Journal of Materials Chemistry C, 2020, 8, 3814-3820.	5.5	19
122	Observation of Defect Luminescence in 2D Dion–Jacobson Perovskites. Advanced Optical Materials, 2021, 9, 2101423.	7.3	19
123	Scalable Synthesis of Palladium Icosahedra in Plug Reactors for the Production of Oxygen Reduction Reaction Catalysts. ChemCatChem, 2016, 8, 1658-1664.	3.7	18
124	Towards Efficient Hardware Implementation of NTT for Kyber on FPGAs. , 2021, , .		18
125	Morphological characterization of pentacene single crystals grown by physical vapor transport. Applied Surface Science, 2007, 253, 3581-3585.	6.1	16
126	Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Interâ€Dot Coupling and Efficient Passivation. Advanced Functional Materials, 2021, 31, 2006864.	14.9	16

#	Article	IF	CITATIONS
127	Tailoring the electron and hole dimensionality to achieve efficient and stable metal halide perovskite scintillators. Nanophotonics, 2021, 10, 2249-2256.	6.0	16
128	Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process. Physical Chemistry Chemical Physics, 2015, 17, 24092-24097.	2.8	14
129	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Interfaces, 2020, 12, 24498-24504.	8.0	14
130	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	3.6	13
131	Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: more kinetically favorable than traditional double-layer architecture. Science China Materials, 2017, 60, 963-976.	6.3	13
132	Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells. Science China Materials, 2019, 62, 173-180.	6.3	13
133	Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency. Acta Chimica Sinica, 2015, 73, 211.	1.4	12
134	Non-thermal plasma fixing of nitrogen into nitrate: solution for renewable electricity storage?. Frontiers of Optoelectronics, 2018, 11, 92-96.	3.7	11
135	Decreasing Structural Dimensionality of Double Perovskites for Phase Stabilization toward Efficient X-ray Detection. ACS Applied Materials & Interfaces, 2021, 13, 61447-61453.	8.0	11
136	Combined post-modification of iodide ligands and wide band gap ZnS in quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 18327.	2.8	9
137	High quality perovskite thin films induced by crystal seeds with lead monoxide interfacial engineering. Journal of Materials Chemistry A, 2016, 4, 16913-16919.	10.3	8
138	Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127.	5.5	8
139	Sb2Se3 film with grain size over 10 µm toward X-ray detection. Frontiers of Optoelectronics, 2021, 14, 341-351.	3.7	8
140	Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer layer. Science Bulletin, 2005, 50, 505-508.	1.7	7
141	Oxide perovskite Ba2AglO6 wafers for X-ray detection. Frontiers of Optoelectronics, 2021, 14, 473-481.	3.7	7
142	Template directed perovskite X-ray detectors towards low ionic migration and low interpixel cross talking. Fundamental Research, 2022, 2, 108-113.	3.3	7
143	Cs ₄ PbBr _{6–<i>x</i>} Cl _{<i>x</i>} Single Crystals with Tunable Emission for X-ray Detection and Imaging. Journal of Physical Chemistry C, 2021, 125, 26619-26626.	3.1	7
144	Interface modification of 8-hydroxyquinoline aluminium with combined effects in quasi-solid dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 5973.	2.8	6

#	Article	IF	CITATIONS
145	Comparison between P25 and anatase-based TiO2 quasi-solid state dye sensitized solar cells. Science Bulletin, 2008, 53, 954-957.	9.0	4
146	A chain-type diamine strategy towards strongly anisotropic triiodide of DMEDA·I6. Science China Materials, 2020, 63, 566-574.	6.3	4
147	Scalable Synthesis of Palladium Icosahedra in Plug Reactors for the Production of Oxygen Reduction Reaction Catalysts. ChemCatChem, 2016, 8, 1602-1602.	3.7	Ο