
Dennis W P M Löwik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6838197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theranostic PSMA ligands with optimized backbones for intraoperative multimodal imaging and photodynamic therapy of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2425-2435.	6.4	10
2	Strain-Promoted Azide–Alkyne Cycloaddition-Based PSMA-Targeting Ligands for Multimodal Intraoperative Tumor Detection of Prostate Cancer. Bioconjugate Chemistry, 2022, 33, 194-205.	3.6	9
3	Luminescent Assay for the Screening of SARSâ€CoVâ€2 M ^{Pro} Inhibitors. ChemBioChem, 2022, 23, .	2.6	5
4	Novel anti-PD-L1 peptide selected from combinatorial phage library inhibits tumor cell growth and restores T-cell activity. Journal of Drug Targeting, 2021, 29, 771-782.	4.4	5
5	Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics, 2021, 13, 1391.	4.5	25
6	Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer. Theranostics, 2021, 11, 1527-1541.	10.0	25
7	Activation of cell-penetrating peptide fragments by disulfide formation. Amino Acids, 2020, 52, 1161-1168.	2.7	5
8	Activatable cell-penetrating peptides: 15 years of research. RSC Chemical Biology, 2020, 1, 192-203.	4.1	38
9	Self-recovering dual cross-linked hydrogels based on bioorthogonal click chemistry and ionic interactions. Journal of Materials Chemistry B, 2020, 8, 5912-5920.	5.8	7
10	PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics, 2019, 9, 6824-6839.	10.0	56
11	Click to enter: activation of oligo-arginine cell-penetrating peptides by bioorthogonal tetrazine ligations. Chemical Science, 2019, 10, 701-705.	7.4	17
12	Comparison of Bioorthogonally Cross-Linked Hydrogels for <i>in Situ</i> Cell Encapsulation. ACS Applied Bio Materials, 2019, 2, 2862-2871.	4.6	19
13	Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Applied Surface Science, 2019, 488, 194-204.	6.1	38
14	A Hybrid Peptide Amphiphile Fiber PEG Hydrogel Matrix for 3D Cell Culture. Advanced Functional Materials, 2019, 29, 1808505.	14.9	47
15	Magnetic fields to align natural and synthetic fibers. , 2018, , 321-340.		4
16	Incorporation of simvastatin in PLLA membranes for guided bone regeneration: effect of thermal treatment on simvastatin release. RSC Advances, 2018, 8, 28546-28554.	3.6	11
17	Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules. Acta Biomaterialia, 2017, 58, 67-79.	8.3	19
18	A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications, 2017, 53, 1088-1091.	4.1	46

DENNIS W P M LöWIK

#	Article	IF	CITATIONS
19	Dodging Endosomes: Effective Cytosolic Antibody Delivery. ChemBioChem, 2017, 18, 2196-2198.	2.6	2
20	Constrained cell penetrating peptides. Drug Discovery Today: Technologies, 2017, 26, 33-42.	4.0	23
21	Coiledâ€Coilâ€Mediated Activation of Oligoarginine Cellâ€Penetrating Peptides. ChemBioChem, 2017, 18, 185-188.	2.6	27
22	Patterning of Soft Matter across Multiple Length Scales. Advanced Functional Materials, 2016, 26, 2609-2616.	14.9	25
23	An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions. Analyst, The, 2016, 141, 5321-5328.	3.5	6
24	Soft PEGâ€Hydrogels with Independently Tunable Stiffness and RGDSâ€Content for Cell Adhesion Studies. Macromolecular Bioscience, 2015, 15, 1338-1347.	4.1	30
25	Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres. Macromolecular Bioscience, 2015, 15, 901-911.	4.1	24
26	Strain-Promoted Oxidation-Controlled Cyclooctyne–1,2-Quinone Cycloaddition (SPOCQ) for Fast and Activatable Protein Conjugation. Bioconjugate Chemistry, 2015, 26, 257-261.	3.6	67
27	Sensing cell adhesion using polydiacetylene-containing peptide amphiphile fibres. Journal of Materials Chemistry B, 2015, 3, 2954-2961.	5.8	10
28	Enzyme-Activatable Cell-Penetrating Peptides through a Minimal Side Chain Modification. Bioconjugate Chemistry, 2015, 26, 850-856.	3.6	24
29	The influence of amino acid sequence on structure and morphology of polydiacetylene containing peptide fibres. Soft Matter, 2015, 11, 1335-1344.	2.7	14
30	A Fast and Activatable Cross‣inking Strategy for Hydrogel Formation. Advanced Materials, 2015, 27, 1235-1240.	21.0	38
31	Molecular tools for the construction of peptide-based materials. Chemical Society Reviews, 2014, 43, 2743.	38.1	95
32	Activation of cell-penetrating peptides by disulfide bridge formation of truncated precursors. Chemical Communications, 2014, 50, 415-417.	4.1	32
33	Ultrafast and reversible thermochromism of a conjugated polymer material based on the assembly of peptide amphiphiles. Chemical Science, 2014, 5, 4189-4195.	7.4	44
34	A structural study of the self-assembly of a palmitoyl peptide amphiphile. Faraday Discussions, 2013, 166, 361.	3.2	8
35	Quick-and-easy preparation and purification of quantum dot–loaded liposomes. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
36	Characterization of polyurethane scaffold surface functionalization with diamines and heparin. Journal of Biomedical Materials Research - Part A, 2013, 101A, 919-922.	4.0	9

DENNIS W P M LöWIK

#	Article	IF	CITATIONS
37	Simple and Efficient Solid-Phase Preparation of Azido-peptides. Organic Letters, 2012, 14, 2330-2333.	4.6	26
38	Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. Journal of Controlled Release, 2012, 164, 87-94.	9.9	65
39	Detection of transglutaminase activity using click chemistry. Amino Acids, 2012, 43, 1251-1263.	2.7	13
40	Polymerization-Induced Color Changes of Polydiacetylene-Containing Liposomes and Peptide Amphiphile Fibers. Langmuir, 2012, 28, 2049-2055.	3.5	20
41	Peptide- and Protein-Based Hydrogels. Chemistry of Materials, 2012, 24, 759-773.	6.7	430
42	Mechanical and thermal stabilities of peptide amphiphile fibres. Soft Matter, 2011, 7, 9737.	2.7	13
43	Oppositely Charged Gelatin Nanospheres as Building Blocks for Injectable and Biodegradable Gels. Advanced Materials, 2011, 23, H119-24.	21.0	148
44	A Modular and Noncovalent Transduction System for Leucineâ€Zipperâ€Tagged Proteins. ChemBioChem, 2011, 12, 2294-2297.	2.6	11
45	Polypeptide–polymer bioconjugates. Chemical Society Reviews, 2010, 39, 329-353.	38.1	240
46	Effect of the Diacetylene Position on the Chromatic Properties of Polydiacetylenes from Self-Assembled Peptide Amphiphiles. Biomacromolecules, 2010, 11, 1676-1683.	5.4	44
47	Stimulus responsive peptide based materials. Chemical Society Reviews, 2010, 39, 3394.	38.1	284
48	A Cell-penetrating Peptide Derived from Human Lactoferrin with Conformation-dependent Uptake Efficiency. Journal of Biological Chemistry, 2009, 284, 36099-36108.	3.4	105
49	Patterns of Diacetylene-Containing Peptide Amphiphiles Using Polarization Holography. Journal of the American Chemical Society, 2009, 131, 15014-15017.	13.7	25
50	Targeting the Urokinase Plasminogen Activator Receptor with Synthetic Self-Assembly Nanoparticles. Bioconjugate Chemistry, 2009, 20, 32-40.	3.6	53
51	Switchable peptides. Drug Discovery Today: Technologies, 2009, 6, e33-e39.	4.0	6
52	Controlled disassembly of peptide amphiphile fibres. Journal of Peptide Science, 2008, 14, 127-133.	1.4	16
53	Self-Assembly and Polymerization of Diacetylene-Containing Peptide Amphiphiles in Aqueous Solution. Biomacromolecules, 2008, 9, 2727-2734.	5.4	40
54	Oligo(<i>p</i> -phenylenevinylene)â^'Peptide Conjugates: Synthesis and Self-Assembly in Solution and at the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2008, 130, 14576-14583.	13.7	100

Dennis W P M Löwik

#	Article	IF	CITATIONS
55	"Clickable―polymersomes. Chemical Communications, 2007, , 3136.	4.1	140
56	Disassembling peptide-based fibres by switching the hydrophobic–hydrophilic balance. Soft Matter, 2007, 3, 1135.	2.7	25
57	Stabilization of Peptide Fibrils by Hydrophobic Interaction. Langmuir, 2007, 23, 2058-2063.	3.5	53
58	A Highly Ordered Material from Magnetically Aligned Peptide Amphiphile Nanofiber Assemblies. Advanced Materials, 2007, 19, 1191-1195.	21.0	98
59	Convenient Solid-Phase Synthesis of Ureido-Pyrimidinone Modified Peptides. European Journal of Organic Chemistry, 2007, 2007, 3622-3632.	2.4	27
60	Solid-phase synthesis of C-terminally modified peptides. Journal of Peptide Science, 2006, 12, 686-692.	1.4	32
61	Synthesis of Bio-Inspired Hybrid PolymersUsing Peptide Synthesis and Protein Engineering. Advances in Polymer Science, 2006, , 19-52.	0.8	74
62	Tuning Secondary Structure and Self-Assembly of Amphiphilic Peptides. Langmuir, 2005, 21, 524-526.	3.5	74
63	Noncovalent synthesis of supramolecular dendritic architectures in water. Journal of Polymer Science Part A, 2005, 43, 6431-6437.	2.3	14
64	Peptide-polymer vesicles prepared by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 6355-6366.	2.3	70
65	Peptide-Containing Block Copolymers: Synthesis and Potential Applications of Bio-Mimetic Materials. Current Organic Chemistry, 2005, 9, 1115-1125.	1.6	19
66	Solid phase synthesis of biohybrid block copolymers. Chemical Communications, 2005, , 602-604.	4.1	31
67	β-Sheet Side Chain Polymers Synthesized by Atom-Transfer Radical Polymerization. Biomacromolecules, 2005, 6, 825-831.	5.4	54
68	Peptide based amphiphiles. Chemical Society Reviews, 2004, 33, 234-245.	38.1	242
69	Non-covalent stabilization of a β-hairpin peptide into liposomes. Organic and Biomolecular Chemistry, 2003, 1, 1827-1829.	2.8	32
70	Synthesis, Aggregation, and Binding Behavior of Synthetic Amphiphilic Receptors. Journal of Organic Chemistry, 2001, 66, 1538-1547.	3.2	20
71	Synthesis of Macrocyclic, Triazine-Based Receptor Molecules. European Journal of Organic Chemistry, 2001, 2001, 2825.	2.4	36
72	Synthesis of 6-Hydroxybenzothiazole-2-carboxylic Acid. Synthesis, 2001, 2001, 1780-1783.	2.3	10

5

Dennis W P M Löwik

#	Article	IF	CITATIONS
73	A stepwise synthesis of triazine-based macrocyclic scaffolds. Tetrahedron Letters, 2000, 41, 1837-1840.	1.4	21
74	Tweezers with Different Bite: Increasing the Affinity of Synthetic Receptors by Varying the Hinge Part. Angewandte Chemie - International Edition, 1998, 37, 1846-1850.	13.8	38
75	Synthesis and characterization of poly[(2,6-dimethyl-1,4-phenylene oxide)-block-isoprene] diblock copolymers. Macromolecular Chemistry and Physics, 1997, 198, 379-389.	2.2	5
76	Synthetic receptors based on peptidosulfonamide peptidomimetics. Tetrahedron Letters, 1996, 37, 8253-8256.	1.4	32
77	Functional Nanomaterials using the Cu-Catalyzed Huisgen Cycloaddition Reaction. , 0, , 255-289.		1