## Masahiro Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6838148/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | CD4 T cell dynamics shape the immune response to combination oncolytic herpes virus and BRAF inhibitor therapy for melanoma. , 2022, 10, e004410.                                        |     | 3         |
| 2  | The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain,<br>Behavior, and Immunity, 2022, 102, 179-194.                                        | 2.0 | 8         |
| 3  | T-cell dysregulation in COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 204-210.                                                                               | 1.0 | 50        |
| 4  | Application of dual Nr4a1-GFP Nr4a3-Tocky reporter mice to study TÂcell receptor signaling by flow cytometry. STAR Protocols, 2021, 2, 100284.                                           | 0.5 | 4         |
| 5  | The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development (Cambridge), 2021, 148, .                           | 1.2 | 11        |
| 6  | Restoring control over autoimmunity by inducing Foxp3. Nature Immunology, 2021, 22, 1080-1082.                                                                                           | 7.0 | 0         |
| 7  | Brief homogeneous TCR signals instruct common iNKT progenitors whose effector diversification is characterized by subsequent cytokine signaling. Immunity, 2021, 54, 2497-2513.e9.       | 6.6 | 19        |
| 8  | NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6C <sup>hi</sup><br>monocytes in pressure-overloaded hearts. Science Signaling, 2021, 14, eabe4932. | 1.6 | 13        |
| 9  | Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune<br>Checkpoint Blockade. Frontiers in Immunology, 2021, 12, 754436.                              | 2.2 | 21        |
| 10 | HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. Journal of Clinical Investigation, 2021, 131, .                            | 3.9 | 25        |
| 11 | Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity, 2020, 52, 151-166.e6.                                      | 6.6 | 130       |
| 12 | T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis.<br>Frontiers in Immunology, 2020, 11, 589380.                                        | 2.2 | 129       |
| 13 | Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Reports, 2020, 33, 108328.                                              | 2.9 | 50        |
| 14 | Immuno-moodulin: A new anxiogenic factor produced by Annexin-A1 transgenic autoimmune-prone T<br>cells. Brain, Behavior, and Immunity, 2020, 87, 689-702.                                | 2.0 | 7         |
| 15 | Control of regulatory Tâ€cell differentiation and function by Tâ€cell receptor signalling and Foxp3 transcription factor complexes. Immunology, 2020, 160, 24-37.                        | 2.0 | 100       |
| 16 | Sonic Hedgehog Is a Determinant of $\hat{I}^{3\hat{I}'}$ T-Cell Differentiation in the Thymus. Frontiers in Immunology, 2019, 10, 1629.                                                  | 2.2 | 13        |
| 17 | IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation.<br>European Journal of Immunology, 2019, 49, 66-78.                               | 1.6 | 38        |
| 18 | Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. Journal of Clinical Investigation, 2019, 129, 3153-3170.                                            | 3.9 | 37        |

Masahiro Ono

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo.<br>Journal of Cell Biology, 2018, 217, 2931-2950.                                                            | 2.3 | 63        |
| 20 | Elucidating T Cell Activation-Dependent Mechanisms for Bifurcation of Regulatory and Effector T Cell<br>Differentiation by Multidimensional and Single-Cell Analysis. Frontiers in Immunology, 2018, 9, 1444.  | 2.2 | 12        |
| 21 | A temporally dynamic <i>Foxp3</i> autoregulatory transcriptional circuit controls the effector Treg programme. EMBO Journal, 2018, 37, .                                                                       | 3.5 | 38        |
| 22 | Interplay between the skin barrier and immune cells in patients with atopic dermatitis unraveled by means of mathematical modeling. Journal of Allergy and Clinical Immunology, 2017, 139, 1790-1792.          | 1.5 | 3         |
| 23 | FoxP3 partners up. Nature Immunology, 2017, 18, 1181-1183.                                                                                                                                                     | 7.0 | 1         |
| 24 | The impact of environmental enrichment on the murine inflammatory immune response. JCI Insight, 2017, 2, e90723.                                                                                               | 2.3 | 30        |
| 25 | Impact of Enriched Environment on Murine T Cell Differentiation and Gene Expression Profile.<br>Frontiers in Immunology, 2016, 7, 381.                                                                         | 2.2 | 16        |
| 26 | Sonic Hedgehog regulates thymic epithelial cell differentiation. Journal of Autoimmunity, 2016, 68,<br>86-97.                                                                                                  | 3.0 | 32        |
| 27 | Water resistance profile as a marker of skin barrier damage in atopic dermatitis patients. Journal of<br>Dermatological Science, 2016, 81, 126-128.                                                            | 1.0 | 6         |
| 28 | Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell<br>Subpopulations. Journal of Immunology, 2016, 196, 2885-2892.                                                        | 0.4 | 18        |
| 29 | Controversies concerning thymusâ€derived regulatory T cells: fundamental issues and a new perspective. Immunology and Cell Biology, 2016, 94, 3-10.                                                            | 1.0 | 27        |
| 30 | A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation. Oncotarget, 2015, 6, 28646-28660.                                                          | 0.8 | 20        |
| 31 | A Zap70â€dependent feedback circuit is essential for efficient selection of CD4 lineage thymocytes.<br>Immunology and Cell Biology, 2015, 93, 406-416.                                                         | 1.0 | 4         |
| 32 | Follicular helper T cell signature in type 1 diabetes. Journal of Clinical Investigation, 2015, 125, 292-303.                                                                                                  | 3.9 | 143       |
| 33 | Visualisation of the T cell differentiation programme by Canonical Correspondence Analysis of transcriptomes. BMC Genomics, 2014, 15, 1028.                                                                    | 1.2 | 18        |
| 34 | Identifying a Hyperkeratosis Signature in Autosomal Recessive Congenital Ichthyosis: Mdm2 Inhibition<br>Prevents Hyperkeratosis in a Rat ARCI Model. Journal of Investigative Dermatology, 2014, 134, 858-861. | 0.3 | 9         |
| 35 | CD8 <sup>+</sup> tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. International Journal of Cancer, 2014, 134, 2393-2402.                             | 2.3 | 76        |
| 36 | Skin Disease Modeling from a Mathematical Perspective. Journal of Investigative Dermatology, 2013, 133, 1472-1478.                                                                                             | 0.3 | 16        |

Masahiro Ono

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Tissue-Derived Hedgehog Proteins Modulate Th Differentiation and Disease. Journal of Immunology, 2013, 190, 2641-2649.                                                                                                                          | 0.4  | 84        |
| 38 | Risk factor-dependent dynamics of atopic dermatitis: modelling multi-scale regulation of epithelium homeostasis. Interface Focus, 2013, 3, 20120090.                                                                                            | 1.5  | 13        |
| 39 | Visualising the Cross-Level Relationships between Pathological and Physiological Processes and Gene<br>Expression: Analyses of Haematological Diseases. PLoS ONE, 2013, 8, e53544.                                                              | 1.1  | 12        |
| 40 | Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T ell activation<br>and differentiation. European Journal of Immunology, 2012, 42, 749-759.                                                                  | 1.6  | 52        |
| 41 | Skin Barrier Homeostasis in Atopic Dermatitis: Feedback Regulation of Kallikrein Activity. PLoS ONE, 2011, 6, e19895.                                                                                                                           | 1.1  | 30        |
| 42 | HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo. PLoS Pathogens, 2011, 7, e1001274.                                                                                                                                | 2.1  | 267       |
| 43 | Indispensable Role of the Runx1-Cbfβ Transcription Complex for In Vivo-Suppressive Function of FoxP3+<br>Regulatory T Cells. Immunity, 2009, 31, 609-620.                                                                                       | 6.6  | 206       |
| 44 | Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3<br>Transcription Factor. Immunity, 2009, 30, 899-911.                                                                                            | 6.6  | 1,955     |
| 45 | Regulatory T Cells and Immune Tolerance. Cell, 2008, 133, 775-787.                                                                                                                                                                              | 13.5 | 4,269     |
| 46 | Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature, 2007, 446, 685-689.                                                                                                                                           | 13.7 | 594       |
| 47 | Control of Autoimmune Myocarditis and Multiorgan Inflammation by Glucocorticoid-Induced TNF<br>Receptor Family-Related Proteinhigh, Foxp3-Expressing CD25+ and CD25â°' Regulatory T Cells. Journal of<br>Immunology, 2006, 176, 4748-4756.      | 0.4  | 144       |
| 48 | Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease.<br>Immunological Reviews, 2006, 212, 8-27.                                                                                                        | 2.8  | 1,404     |
| 49 | Renal Metabolism of111In-DTPA-d-Phe1-Octreotide in Vivo. Bioconjugate Chemistry, 1998, 9, 662-670.                                                                                                                                              | 1.8  | 54        |
| 50 | Assessment of the Radiochemical Design of Antibodies with a Metabolizable Linkage for<br>Target-Selective Radioactivity Delivery. Bioconjugate Chemistry, 1998, 9, 497-506.                                                                     | 1.8  | 16        |
| 51 | Conventional and High-Yield Synthesis of DTPA-Conjugated Peptides:Â Application of a Monoreactive<br>DTPA to DTPA-d-Phe1-octreotide Synthesisâ€. Bioconjugate Chemistry, 1997, 8, 442-446.                                                      | 1.8  | 37        |
| 52 | A Novel Radioiodination Reagent for Protein Radiopharmaceuticals with l-Lysine as a Plasma-Stable<br>Metabolizable Linkage To Liberate m-Iodohippuric Acid after Lysosomal Proteolysis. Journal of<br>Medicinal Chemistry, 1997, 40, 2643-2652. | 2.9  | 27        |
| 53 | Reassessment of Diethylenetriaminepentaacetic Acid (DTPA) as a Chelating Agent for Indium-111 Labeling<br>of Polypeptides Using a Newly Synthesized Monoreactive DTPA Derivative. Journal of Medicinal<br>Chemistry, 1996, 39, 3451-3460.       | 2.9  | 86        |