Vittorio Sartorelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6837974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic sex chromosome expression in Drosophila male germ cells. Nature Communications, 2021, 12, 892.	12.8	53
2	Protocol for RNA-seq library preparation starting from a rare muscle stem cell population or a limited number of mouse embryonic stem cells. STAR Protocols, 2021, 2, 100451.	1.2	0
3	Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development. Blood Advances, 2021, 5, 4949-4962.	5.2	7
4	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	14.3	46
5	FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nature Cell Biology, 2020, 22, 1307-1318.	10.3	96
6	Enhancer RNAs are an important regulatory layer of the epigenome. Nature Structural and Molecular Biology, 2020, 27, 521-528.	8.2	214
7	miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate. Nature Communications, 2019, 10, 2157.	12.8	55
8	Single-cell analysis of adult skeletal muscle stem cells in homeostatic and regenerative conditions. Development (Cambridge), 2019, 146, .	2.5	135
9	Identification of Skeletal Muscle Satellite Cells by Immunofluorescence with Pax7 and Laminin Antibodies. Journal of Visualized Experiments, 2018, , .	0.3	11
10	ATP Citrate Lyase: A New Player Linking Skeletal Muscle Metabolism and Epigenetics. Trends in Endocrinology and Metabolism, 2018, 29, 202-204.	7.1	6
11	A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans. Molecular Cell, 2018, 71, 129-141.e8.	9.7	126
12	Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. Molecular Cell, 2018, 71, 1040-1050.e8.	9.7	107
13	Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Molecular Cell, 2018, 71, 375-388.	9.7	45
14	Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Molecular Cell, 2017, 65, 873-884.e8.	9.7	38
15	Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK. EBioMedicine, 2017, 18, 128-138.	6.1	30
16	The Elongation Factor Spt6 Maintains ESC Pluripotency by Controlling Super-Enhancers and Counteracting Polycomb Proteins. Molecular Cell, 2017, 68, 398-413.e6.	9.7	29
17	Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nature Communications, 2017, 8, 1707.	12.8	86
18	Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight, 2016, 1, .	5.0	38

#	Article	IF	CITATIONS
19	Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum. Development (Cambridge), 2016, 143, 1971-80.	2.5	39
20	S6K1 ing to Res TOR Adipogenesis with Polycomb. Molecular Cell, 2016, 62, 325-326.	9.7	0
21	MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB. Cell Reports, 2016, 17, 514-526.	6.4	75
22	Laminopathies disrupt epigenomic developmental programs and cell fate. Science Translational Medicine, 2016, 8, 335ra58.	12.4	91
23	Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Reports, 2016, 17, 1369-1382.	6.4	66
24	The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Cell Reports, 2016, 14, 1156-1168.	6.4	49
25	EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 2015, 5, 10643.	3.3	129
26	Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell, 2015, 17, 651-662.	11.1	252
27	IL-6 Blockade as a Therapeutic Approach for Duchenne Muscular Dystrophy. EBioMedicine, 2015, 2, 274-275.	6.1	10
28	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520, 558-562.	27.8	323
29	The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell Stem Cell, 2015, 16, 171-183.	11.1	439
30	The emerging roles of eRNAs in transcriptional regulatory networks. RNA Biology, 2014, 11, 106-110.	3.1	24
31	An evolutionarily biased distribution of miRNA sites toward regulatory genes with high promoter-driven intrinsic transcriptional noise. BMC Evolutionary Biology, 2014, 14, 74.	3.2	17
32	Gcn5 and PCAF Regulate <i>PPAR</i> γ and <i>Prdm16</i> Expression To Facilitate Brown Adipogenesis. Molecular and Cellular Biology, 2014, 34, 3746-3753.	2.3	58
33	Interactome Maps of Mouse Gene Regulatory Domains Reveal Basic Principles of Transcriptional Regulation. Cell, 2013, 155, 1507-1520.	28.9	299
34	eRNAs Promote Transcription by Establishing Chromatin Accessibility at Defined Genomic Loci. Molecular Cell, 2013, 51, 606-617.	9.7	412
35	A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cellular and Molecular Life Sciences, 2013, 70, 2015-2029.	5.4	85
36	The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. EMBO Journal, 2013, 32, 1075-1086.	7.8	67

#	Article	IF	CITATIONS
37	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	27.8	332
38	Essential Role of SIRT1 Signaling in the Nucleus Accumbens in Cocaine and Morphine Action. Journal of Neuroscience, 2013, 33, 16088-16098.	3.6	113
39	The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the <i>myostatin</i> and <i>c-Met</i> genes and regulates skeletal muscle atrophy. Genes and Development, 2013, 27, 1299-1312.	5.9	74
40	Transcription factors and <scp>CD</scp> 4 T cells seeking identity: masters, minions, setters and spikers. Immunology, 2013, 139, 294-298.	4.4	25
41	H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. ELife, 2013, 2, e01503.	6.0	369
42	Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 841-846.	7.1	167
43	STATs Shape the Active Enhancer Landscape of T Cell Populations. Cell, 2012, 151, 981-993.	28.9	325
44	Polycomb Protein Ezh1 Promotes RNA Polymerase II Elongation. Molecular Cell, 2012, 45, 255-262.	9.7	163
45	Phosphoryl-EZH-ion. Cell Stem Cell, 2011, 8, 262-265.	11.1	27
46	Epigenetic Basis of Skeletal Muscle Regeneration. , 2011, , 329-339.		1
47	Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks. PLoS ONE, 2011, 6, e29057.	2.5	40
48	Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis, 2011, 32, 1607-1614.	2.8	115
49	Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes and Development, 2011, 25, 789-794.	5.9	188
50	Sculpting Chromatin Beyond the Double Helix. Current Topics in Developmental Biology, 2011, 96, 57-83.	2.2	25
51	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
52	SirT1 in muscle physiology and disease: lessons from mouse models. DMM Disease Models and Mechanisms, 2010, 3, 298-303.	2.4	57
53	Myc-Nick: The Force Behind c-Myc. Science Signaling, 2010, 3, pe49.	3.6	3
54	MicroRNA-214 and polycomb group proteins: A regulatory circuit controlling differentiation and cell fate decisions. Cell Cycle, 2010, 9, 1445-1446.	2.6	12

#	Article	IF	CITATIONS
55	HDACs and sirtuins: Targets for new pharmacological interventions in human diseases. Pharmacological Research, 2010, 62, 1-2.	7.1	5
56	TNF/p38α/Polycomb Signaling to Pax7 Locus in Satellite Cells Links Inflammation to the Epigenetic Control of Muscle Regeneration. Cell Stem Cell, 2010, 7, 455-469.	11.1	346
57	Mir-214-Dependent Regulation of the Polycomb Protein Ezh2 in Skeletal Muscle and Embryonic Stem Cells. Molecular Cell, 2009, 36, 61-74.	9.7	320
58	p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. Journal of Cellular Biochemistry, 2008, 103, 1438-1451.	2.6	64
59	Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt. Developmental Cell, 2008, 14, 661-673.	7.0	701
60	Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle, 2008, 7, 3669-3679.	2.6	172
61	The DEAD-Box p68/p72 Proteins and the Noncoding RNA Steroid Receptor Activator SRA: Eclectic Regulators of Disparate Biological Functions. Cell Cycle, 2007, 6, 1172-1176.	2.6	38
62	MyoD Acetylation Influences Temporal Patterns of Skeletal Muscle Gene Expression. Journal of Biological Chemistry, 2007, 282, 37650-37659.	3.4	42
63	The RNA Helicases p68/p72 and the Noncoding RNA SRA Are Coregulators of MyoD and Skeletal Muscle Differentiation. Developmental Cell, 2006, 11, 547-560.	7.0	304
64	Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Medicine, 2006, 12, 1147-1150.	30.7	294
65	Fgfr4 Is Required for Effective Muscle Regeneration in Vivo. Journal of Biological Chemistry, 2006, 281, 429-438.	3.4	90
66	Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain, 2006, 129, 996-1013.	7.6	288
67	Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. Journal of Cell Biology, 2006, 172, 233-244.	5.2	103
68	A p38-dependent pathway regulates ΔNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes. Oncogene, 2005, 24, 6970-6975.	5.9	39
69	Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Molecular Cell, 2005, 20, 491.	9.7	0
70	Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Current Opinion in Genetics and Development, 2005, 15, 528-535.	3.3	143
71	Tax Relieves Transcriptional Repression by Promoting Histone Deacetylase 1 Release from the Human T-Cell Leukemia Virus Type 1 Long Terminal Repeat. Journal of Virology, 2004, 78, 6735-6743.	3.4	48
72	The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes and Development, 2004, 18, 2627-2638.	5.9	534

#	Article	IF	CITATIONS
73	Molecular and Cellular Determinants of Skeletal Muscle Atrophy and Hypertrophy. Science Signaling, 2004, 2004, re11-re11.	3.6	104
74	Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300. Oncogene, 2004, 23, 2177-2187.	5.9	33
75	Regulation of the p300 HAT domain via a novel activation loop. Nature Structural and Molecular Biology, 2004, 11, 308-315.	8.2	374
76	Deacetylase Inhibitors Increase Muscle Cell Size by Promoting Myoblast Recruitment and Fusion through Induction of Follistatin. Developmental Cell, 2004, 6, 673-684.	7.0	214
77	Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Molecular Cell, 2003, 12, 51-62.	9.7	542
78	Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7757-7762.	7.1	114
79	Slug Is a Novel Downstream Target of MyoD. Journal of Biological Chemistry, 2002, 277, 30091-30101.	3.4	97
80	DNA Damage-Dependent Acetylation of p73 Dictates the Selective Activation of Apoptotic Target Genes. Molecular Cell, 2002, 9, 175-186.	9.7	298
81	Class I Histone Deacetylases Sequentially Interact with MyoD and pRb during Skeletal Myogenesis. Molecular Cell, 2001, 8, 885-897.	9.7	197
82	The link between chromatin structure, protein acetylation and cellular differentiation. Frontiers in Bioscience - Landmark, 2001, 6, d1024.	3.0	14
83	HERP, a Novel Heterodimer Partner of HES/E(spl) in Notch Signaling. Molecular and Cellular Biology, 2001, 21, 6080-6089.	2.3	197
84	HERP, a New Primary Target of Notch Regulated by Ligand Binding. Molecular and Cellular Biology, 2001, 21, 6071-6079.	2.3	176
85	The link between chromatin structure protein acetylation and cellular differentiation. Frontiers in Bioscience - Landmark, 2001, 6, d1024-1047.	3.0	3
86	Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. Journal of Cellular Physiology, 2000, 185, 155-173.	4.1	262
87	Proteasome-Mediated Degradation of the Coactivator p300 Impairs Cardiac Transcription. Molecular and Cellular Biology, 2000, 20, 8643-8654.	2.3	99
88	Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. , 2000, 185, 155.		1
89	The Nuclear Receptor Corepressor N-CoR Regulates Differentiation: N-CoR Directly Interacts with MyoD. Molecular Endocrinology, 1999, 13, 1155-1168.	3.7	67
90	Acetylation of MyoD Directed by PCAF Is Necessary for the Execution of the Muscle Program. Molecular Cell, 1999, 4, 725-734.	9.7	334

#	Article	IF	CITATIONS
91	Regulation of Histone Acetyltransferases p300 and PCAF by the bHLH Protein Twist and Adenoviral Oncoprotein E1A. Cell, 1999, 96, 405-413.	28.9	350
92	Myogenic Basic Helix-Loop-Helix Proteins and Sp1 Interact as Components of a Multiprotein Transcriptional Complex Required for Activity of the Human Cardiac α-Actin Promoter. Molecular and Cellular Biology, 1999, 19, 2577-2584.	2.3	87
93	twist is a potential oncogene that inhibits apoptosis. Genes and Development, 1999, 13, 2207-2217.	5.9	459
94	The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and MyoD. Nucleic Acids Research, 1998, 26, 5501-5510.	14.5	43
95	Gene transfer and cell transplant: an experimental approach to repair a 'broken heart'. Cardiovascular Research, 1997, 35, 431-441.	3.8	51
96	The Basic Domain of Myogenic Basic Helix-Loop-Helix (bHLH) Proteins Is the Novel Target for Direct Inhibition by Another bHLH Protein, Twist. Molecular and Cellular Biology, 1997, 17, 6563-6573.	2.3	143
97	Molecular Mechanisms of Myogenic Coactivation by p300: Direct Interaction with the Activation Domain of MyoD and with the MADS Box of MEF2C. Molecular and Cellular Biology, 1997, 17, 1010-1026.	2.3	346
98	Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation. Molecular Cell, 1997, 1, 35-45.	9.7	398
99	Muscle-specific gene expression. A comparison of cardiac and skeletal muscle transcription strategies Circulation Research, 1993, 72, 925-931.	4.5	57
100	Myocardial activation of the human cardiac alpha-actin promoter by helix-loop-helix proteins Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4047-4051.	7.1	100
101	Polymorphism and mapping of the IGF1 gene, and absence of association with stature among African Pygmies. Human Genetics, 1990, 85, 349-54.	3.8	17
102	Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1 Genes and Development, 1990, 4, 1811-1822.	5.9	344