SZinatloo-Ajabshir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6837773/publications.pdf

Version: 2024-02-01

		24978	62479
88	6,843	57	80
papers	citations	h-index	g-index
0.1	0.1	0.1	3068
91	91	91	3068
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Composites Part B: Engineering, 2019, 167, 643-653.	5.9	312
2	Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Composites Part B: Engineering, 2019, 174, 106930.	5.9	246
3	Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies. Journal of Molecular Liquids, 2016, 216, 545-551.	2.3	216
4	Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceramics International, 2020, 46, 6095-6107.	2.3	212
5	Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceramics International, 2020, 46, 17186-17196.	2.3	199
6	Nd2O3-SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity. Ultrasonics Sonochemistry, 2018, 42, 171-182.	3.8	174
7	Nanocrystalline Pr ₆ O ₁₁ : synthesis, characterization, optical and photocatalytic properties. New Journal of Chemistry, 2015, 39, 3948-3955.	1.4	165
8	Facile fabrication of Dy 2 Sn 2 O 7 -SnO 2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. Journal of Colloid and Interface Science, 2017, 497, 298-308.	5.0	164
9	Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrasonics Sonochemistry, 2021, 72, 105420.	3.8	149
10	Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Advances, 2015, 5, 33792-33800.	1.7	147
11	Nd2Zr2O7-Nd2O3 nanocomposites: New facile synthesis, characterization and investigation of photocatalytic behaviour. Materials Letters, 2016, 180, 27-30.	1.3	144
12	Novel simple solvent-less preparation, characterization and degradation of the cationic dye over holmium oxide ceramic nanostructures. Ceramics International, 2015, 41, 9593-9601.	2.3	142
13	Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrasonics Sonochemistry, 2022, 82, 105892.	3.8	108
14	Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. Journal of Alloys and Compounds, 2019, 791, 792-799.	2.8	107
15	Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. Journal of Materials Science: Materials in Medicine, 2011, 22, 63-69.	1.7	94
16	Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrasonics Sonochemistry, 2021, 71, 105376.	3.8	88
17	Rare earth zirconate nanostructures: Recent development on preparation and photocatalytic applications. Journal of Alloys and Compounds, 2018, 767, 1164-1185.	2.8	87
18	Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Separation and Purification Technology, 2021, 267, 118667.	3.9	87

#	Article	IF	CITATIONS
19	Facile synthesis of Nd2Sn2O7-SnO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water. Journal of Environmental Management, 2019, 233, 107-119.	3.8	83
20	Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route. Journal of Industrial and Engineering Chemistry, 2014, 20, 3313-3319.	2.9	82
21	Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Advanced Powder Technology, 2017, 28, 747-754.	2.0	81
22	New facile synthesis, structural and photocatalytic studies of NdOCl-Nd2Sn2O7-SnO2 nanocomposites. Journal of Molecular Liquids, 2016, 220, 902-909.	2.3	79
23	Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route. PLoS ONE, 2017, 12, e0158549.	1.1	79
24	Green synthesis and characterization of Dy2Ce2O7 ceramic nanostructures with good photocatalytic properties under visible light for removal of organic dyes in water. Journal of Cleaner Production, 2018, 192, 678-687.	4.6	79
25	Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. Journal of Alloys and Compounds, 2018, 763, 314-321.	2.8	79
26	Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. International Journal of Hydrogen Energy, 2019, 44, 20110-20120.	3.8	79
27	Effect of alumina nanoparticles on the antifouling properties of polycarbonateâ€polyurethane blend ultrafiltration membrane for water treatment. Polymer Engineering and Science, 2021, 61, 2364-2375.	1.5	79
28	Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceramics International, 2020, 46, 28894-28902.	2.3	77
29	Facile preparation of Nd2Zr2O7–ZrO2 nanocomposites as an effective photocatalyst via a new route. Journal of Energy Chemistry, 2017, 26, 315-323.	7.1	75
30	Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: Green synthesis using pomegranate juice and characterization. Journal of Cleaner Production, 2018, 198, 11-18.	4.6	75
31	Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceramics International, 2021, 47, 8959-8972.	2.3	75
32	Facile size-controlled preparation of highly photocatalytically active praseodymium zirconate nanostructures for degradation and removal of organic pollutants. Separation and Purification Technology, 2017, 177, 110-120.	3.9	74
33	Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. International Journal of Hydrogen Energy, 2020, 45, 22761-22774.	3.8	74
34	Simple morphology-controlled fabrication of nickel chromite nanostructures via a novel route. Chemical Engineering Journal, 2015, 279, 605-614.	6.6	73
35	Simple salt-assisted combustion synthesis of Nd2Sn2O7â€"SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. Journal of Materials Science: Materials in Electronics, 2016, 27, 11698-11706.	1.1	73
36	Nd2Sn2O7 nanostructures: New facile Pechini preparation, characterization, and investigation of their photocatalytic degradation of methyl orange dye. Advanced Powder Technology, 2017, 28, 697-705.	2.0	73

#	Article	IF	CITATIONS
37	Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. Journal of Cleaner Production, 2019, 222, 103-110.	4.6	73
38	Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Separation and Purification Technology, 2020, 248, 117062.	3.9	73
39	Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrasonics Sonochemistry, 2017, 39, 452-460.	3.8	72
40	Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceramics International, 2020, 46, 26548-26556.	2.3	72
41	New sodium dodecyl sulfate-assisted preparation of Nd ₂ O ₃ nanostructures via a simple route. RSC Advances, 2015, 5, 56666-56676.	1.7	71
42	Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. Journal of Molecular Liquids, 2017, 243, 219-226.	2.3	71
43	Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. Journal of Molecular Liquids, 2017, 225, 645-651.	2.3	71
44	Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water. International Journal of Hydrogen Energy, 2021, 46, 20534-20546.	3.8	71
45	Preparation, characterization and photocatalytic properties of Pr ₂ Ce ₂ O ₇ nanostructures via a facile procedure. RSC Advances, 2016, 6, 107785-107792.	1.7	70
46	One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. Journal of Materials Science: Materials in Electronics, 2020, 31, 17332-17338.	1.1	70
47	Novel poly(ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceramics International, 2015, 41, 567-575.	2.3	69
48	Nd2O3 nanostructures: Simple synthesis, characterization and its photocatalytic degradation of methylene blue. Journal of Molecular Liquids, 2017, 234, 430-436.	2.3	69
49	Novel synthesis of Dy ₂ Ce ₂ O ₇ nanostructures via a facile combustion route. RSC Advances, 2016, 6, 26895-26901.	1.7	68
50	Magnetic Lu ₂ Cu ₂ O ₅ -based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances, 2021, 11, 40100-40111.	1.7	68
51	Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. Journal of Materials Science: Materials in Electronics, 2016, 27, 425-435.	1.1	67
52	Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. Journal of Colloid and Interface Science, 2022, 619, 1-13.	5.0	67
53	Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Separation and Purification Technology, 2017, 178, 138-146.	3.9	66
54	Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. Journal of Molecular Liquids, 2017, 231, 306-313.	2.3	66

#	Article	IF	CITATIONS
55	Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light. Ceramics International, 2018, 44, 3873-3883.	2.3	64
56	Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Separation and Purification Technology, 2017, 179, 77-85.	3.9	63
57	Sono-synthesis and characterization of Ho2O3 nanostructures via a new precipitation way for photocatalytic degradation improvement of erythrosine. International Journal of Hydrogen Energy, 2017, 42, 15178-15188.	3.8	63
58	Preparation and characterization of HgI2 nanostructures via a new facile route. Materials Letters, 2017, 193, 9-12.	1.3	60
59	Recent advances in nanostructured Snâ^'Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceramics International, 2021, 47, 23702-23724.	2.3	60
60	Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. International Journal of Hydrogen Energy, 2022, 47, 5403-5417.	3.8	59
61	Zirconia Nanostructures: Novel Facile Surfactantâ€Free Preparation and Characterization. International Journal of Applied Ceramic Technology, 2016, 13, 108-115.	1.1	57
62	Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceramics International, 2020, 46, 66-73.	2.3	56
63	Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. Journal of Materials Science: Materials in Electronics, 2015, 26, 5812-5821.	1.1	55
64	Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. Journal of Materials Science: Materials in Electronics, 2017, 28, 17849-17859.	1.1	55
65	Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route. Journal of Materials Science: Materials in Electronics, 2015, 26, 5658-5667.	1.1	53
66	Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. Journal of Materials Science: Materials in Electronics, 2015, 26, 5043-5051.	1.1	51
67	Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Separation and Purification Technology, 2022, 280, 119841.	3.9	51
68	Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. Journal of Cleaner Production, 2019, 215, 480-487.	4.6	50
69	Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. Journal of Materials Science: Materials in Electronics, 2016, 27, 3918-3928.	1.1	49
70	Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 21611-21624.	3.8	49
71	Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 834-842.	1.1	48
72	New simple route to prepare Dy2Ce2O7 nanostructures: Structural and photocatalytic studies. Journal of Molecular Liquids, 2016, 222, 218-224.	2.3	45

#	Article	IF	CITATIONS
73	Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceramics International, 2021, 47, 30178-30187.	2.3	45
74	A Sonochemicalâ€Assisted Synthesis of Pure Nanocrystalline Tetragonal Zirconium Dioxide Using Tetramethylethylenediamine. International Journal of Applied Ceramic Technology, 2014, 11, 654-662.	1.1	44
75	Facile fabrication of efficient Pr2Ce2O7 ceramic nanostructure for enhanced photocatalytic performances under solar light. Ceramics International, 2022, 48, 24695-24705.	2.3	44
76	Magnetically recyclable ZnCo2O4/Co3O4 nano-photocatalyst: Green combustion preparation, characterization and its application forÂenhanced degradation of contaminated water under sunlight. International Journal of Hydrogen Energy, 2022, 47, 16852-16861.	3.8	37
77	New facile preparation of Ho2O3 nanostructured material with improved photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2017, 28, 1914-1924.	1.1	36
78	Dysprosium cerate nanostructures: facile synthesis, characterization, optical and photocatalytic properties. Journal of Rare Earths, 2017, 35, 805-812.	2.5	33
79	Preparation of nanocrystalline praseodymium oxide with different shapes via a simple thermal decomposition route. Journal of Materials Science: Materials in Electronics, 2016, 27, 998-1006.	1.1	29
80	TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. Inorganic Chemistry Communication, 2022, 136, 109144.	1.8	27
81	Hydrothermal synthesis of CeVO4 nanostructures with different morphologies for electrochemical hydrogen storage. Ceramics International, 2021, 47, 35248-35259.	2.3	25
82	Innovative synthesis of a novel ZnO/ZnBi2O4/graphene ternary heterojunction nanocomposite photocatalyst in the presence of tragacanth mucilage as natural surfactant. Ceramics International, 2022, 48, 6078-6086.	2.3	19
83	Rare earth cerate (Re2Ce2O7) ceramic nanomaterials. , 2022, , 47-75.		1
84	Rare-Earth-Based Materials for Heterogeneous Photocatalysis. , 0, , .		0
85	Lanthanide-Based Compounds for Environmental Remediation. , 2021, , 1269-1289.		0
86	Rare earth orthovanadate ceramic nanomaterials. , 2022, , 105-134.		0
87	Ceria and rare earth oxides (R2O3) ceramic nanomaterials. , 2022, , 13-45.		0
88	Advanced rare earth-based ceramic nanomaterials at a glance. , 2022, , 1-11.		0