## Xin-Gui Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683713/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics.<br>Journal of Applied Physics, 2005, 97, 034109.                                                                                                                                   | 1.1 | 143       |
| 2  | Oxygen-vacancy-related relaxation and conduction behavior in (Pb1- <i>x</i> Ba <i>x</i> )(Zr0.95Ti0.05)O3 ceramics. AIP Advances, 2014, 4, .                                                                                                                                             | 0.6 | 98        |
| 3  | Enhanced energy storage density and efficiency in lead-free Bi(Mg1/2Hf1/2)O3-modified BaTiO3 ceramics.<br>Chemical Engineering Journal, 2021, 418, 129379.                                                                                                                               | 6.6 | 85        |
| 4  | Preparation and Electrical Properties of Highly (111)-Oriented (Na0.5Bi0.5)TiO3 Thin Films by a Solâ^'Gel<br>Process. Chemistry of Materials, 2004, 16, 5293-5296.                                                                                                                       | 3.2 | 82        |
| 5  | High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. Journal of Alloys and Compounds, 2018, 757, 169-176.                                                                                                    | 2.8 | 79        |
| 6  | Resistive Switching Characteristics of HfO2 Thin Films on Mica Substrates Prepared by Sol-Gel<br>Process. Nanomaterials, 2019, 9, 1124.                                                                                                                                                  | 1.9 | 55        |
| 7  | Excellent energy storage density and efficiency in lead-free Sm-doped<br>BaTiO <sub>3</sub> –Bi(Mg <sub>0.5</sub> Ti <sub>0.5</sub> )O <sub>3</sub> ceramics. Journal of<br>Materials Chemistry C, 2020, 8, 13405-13414.                                                                 | 2.7 | 55        |
| 8  | Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of<br>Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. Journal of Materiomics, 2018, 4, 194-201.                                                                                              | 2.8 | 53        |
| 9  | Antiferroelectric to relaxor ferroelectric phase transition in PbO modified<br>(Pb <sub>0.97</sub> La <sub>0.02</sub> )(Zr <sub>0.95</sub> Ti <sub>0.05</sub> )O <sub>3</sub> ceramics<br>with a large energy-density for dielectric energy storage. RSC Advances, 2017, 7, 43327-43333. | 1.7 | 50        |
| 10 | Giant electrocaloric effect in BaTiO3–Bi(Mg1/2Ti1/2)O3 lead-free ferroelectric ceramics. Journal of<br>Alloys and Compounds, 2018, 747, 1053-1061.                                                                                                                                       | 2.8 | 48        |
| 11 | The great improvement effect of pores on ZT in Co1â^'xNixSb3 system. Applied Physics Letters, 2008, 93, .                                                                                                                                                                                | 1.5 | 46        |
| 12 | Large Electrocaloric Effect in Lead-free<br>Ba(Hf <sub><i>x</i></sub> Ti <sub>1<i>–x</i></sub> )O <sub>3</sub> Ferroelectric Ceramics for Clean<br>Energy Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 8920-8925.                                                   | 3.2 | 44        |
| 13 | Oxygenâ€Vacancyâ€Related High Temperature Dielectric Relaxation in<br>(Pb <sub>1â^'<i>x</i></sub> Ba <sub><i>x</i></sub> )ZrO <sub>3</sub> Ceramics. Journal of the American<br>Ceramic Society, 2015, 98, 551-558.                                                                      | 1.9 | 42        |
| 14 | A Review of a Good Binary Ferroelectric Ceramic: BaTiO <sub>3</sub> –BiFeO <sub>3</sub> . ACS Applied<br>Electronic Materials, 2022, 4, 2109-2145.                                                                                                                                       | 2.0 | 40        |
| 15 | Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 1075-1081.                                                                                                     | 1.1 | 37        |
| 16 | Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead<br>titanate ceramics for potential solid-state refrigeration applications. Scientific Reports, 2018, 8, 396.                                                                                  | 1.6 | 35        |
| 17 | Electrocaloric effect and pyroelectric properties in Ce-doped BaCexTi1â^'xO3 ceramics. Journal of<br>Alloys and Compounds, 2019, 776, 731-739.                                                                                                                                           | 2.8 | 35        |
| 18 | A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. Journal of Materials Chemistry C, 2021, 9, 12642-12649.                                                                                                               | 2.7 | 35        |

| #  | Article                                                                                                                                                                                                                                                                   | IF                 | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| 19 | Paraelectric Matrix-Tuned Energy Storage in<br>BiFeO <sub>3</sub> –BaTiO <sub>3</sub> –SrTiO <sub>3</sub> Relaxor Ferroelectrics. ACS Applied<br>Energy Materials, 2021, 4, 9216-9226.                                                                                    | 2.5                | 30                |
| 20 | Orientation related electrocaloric effect and dielectric phase transitions of relaxor PMN-PT single crystals. Ceramics International, 2017, 43, 16300-16305.                                                                                                              | 2.3                | 28                |
| 21 | Temperature-dependent dielectric relaxation and high tunability of (Ba1-Sr )TiO3 ceramics. Journal of Alloys and Compounds, 2018, 731, 70-77.                                                                                                                             | 2.8                | 28                |
| 22 | The Microstructure, Electric, Optical and Photovoltaic Properties of BiFeO3 Thin Films Prepared by<br>Low Temperature Sol–Gel Method. Materials, 2019, 12, 1444.                                                                                                          | 1.3                | 27                |
| 23 | Highâ€Temperature Dielectric Relaxation Behaviors of Relaxerâ€Like<br>PbZrO <sub>3</sub> –SrTiO <sub>3</sub> Ceramics for Energyâ€Storage Applications. Energy Technology,<br>2016, 4, 633-640.                                                                           | 1.8                | 26                |
| 24 | Pyroelectric energy harvesting capabilities and electrocaloric effect in lead-free Sr Ba1-Nb2O6 ferroelectric ceramics. Journal of Alloys and Compounds, 2019, 791, 1038-1045.                                                                                            | 2.8                | 26                |
| 25 | Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films. Materials and Design, 2021, 204, 109666.                                                                                                                                                     | 3.3                | 26                |
| 26 | Energy storage density and charge–discharge properties of PbHf1â^'Sn O3 antiferroelectric ceramics.<br>Chemical Engineering Journal, 2022, 429, 132540.                                                                                                                   | 6.6                | 26                |
| 27 | Dielectric relaxation and pinning phenomenon of (Sr,Pb)TiO3 ceramics for dielectric tunable device application. Scientific Reports, 2016, 6, 31960.                                                                                                                       | 1.6                | 25                |
| 28 | Photodiode characteristics of HfO2 thin films prepared by magnetron sputtering. Materials and Design, 2020, 188, 108465.                                                                                                                                                  | 3.3                | 24                |
| 29 | High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics.<br>Materials, 2017, 10, 143.                                                                                                                                                 | 1.3                | 23                |
| 30 | Bipolar resistive switching behavior and conduction mechanisms of composite nanostructured TiO2/ZrO2 thin film. Ceramics International, 2020, 46, 21196-21201.                                                                                                            | 2.3                | 22                |
| 31 | Large Room Temperature Negative Electrocaloric Effect in Novel Antiferroelectric<br>PbHfO <sub>3</sub> Films. ACS Applied Materials & Interfaces, 2021, 13, 21331-21337.                                                                                                  | 4.0                | 21                |
| 32 | Electrical properties of highly (111)-oriented lead zirconate thin films. Solid State Communications, 2004, 130, 373-377.                                                                                                                                                 | 0.9                | 20                |
| 33 | Giant negative electrocaloric effect in B-site non-stoichiometric<br>(Pb <sub>0.97</sub> La <sub>0.02</sub> )(Zr <sub>0.95</sub> Ti <sub>0.05</sub> ) <sub>1+<i>y</i></sub> O <sub<br>anti-ferroelectric ceramics. Materials Research Letters, 2018, 6, 384-389.</sub<br> | > <b>3.</b> a/sub> | 20                |
| 34 | Composition dependence of giant electrocaloric effect in Pb Sr1-TiO3 ceramics for energy-related applications. Journal of Materiomics, 2019, 5, 118-126.                                                                                                                  | 2.8                | 19                |
| 35 | Multiferroic properties and resistive switching behaviors of Ni0.5Zn0.5Fe2O4 thin films. Advanced Composites and Hybrid Materials, 2021, 4, 1-7.                                                                                                                          | 9.9                | 19                |
| 36 | Large energy-storage density and positive electrocaloric effect in <i>x</i> BiFeO <sub>3</sub> –(1 â^') Tj ETQqO                                                                                                                                                          | 0 0 rgBT /<br>2.7  | Overlock 10<br>17 |

1302-1312.

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enhancement of energy-storage properties in BiFeO3-based lead-free bulk ferroelectrics. Ceramics<br>International, 2022, 48, 16792-16799.                                                                          | 2.3 | 17        |
| 38 | Bipolar resistive switching characteristics of amorphous SrTiO <sub>3</sub> thin films prepared by the sol-gel process. Journal of Asian Ceramic Societies, 2019, 7, 298-305.                                      | 1.0 | 16        |
| 39 | Synaptic behaviors in flexible Au/WO /Pt/mica memristor for neuromorphic computing system.<br>Materials Today Physics, 2022, 23, 100650.                                                                           | 2.9 | 16        |
| 40 | Enhancement of the photoelectric properties of composite oxide TiO2-SrTiO3 thin films. Advanced Composites and Hybrid Materials, 2022, 5, 1557-1565.                                                               | 9.9 | 15        |
| 41 | Energy storage and charge-discharge performance of B-site doped NBT-based lead-free ceramics.<br>Journal of Alloys and Compounds, 2022, 911, 165074.                                                               | 2.8 | 15        |
| 42 | Growth and characterization of oriented Pb1â^'xCaxTiO3 thin films. Thin Solid Films, 2000, 375, 159-162.                                                                                                           | 0.8 | 14        |
| 43 | Giant electrocaloric effect in lead zinc niobate titanate single crystal. Journal of Alloys and Compounds, 2017, 710, 297-301.                                                                                     | 2.8 | 14        |
| 44 | Enhanced energy-storage density and temperature stability of Pb0.89La0.06Sr0.05(Zr0.95Ti0.05)O3<br>anti-ferroelectric thin ï¬łm capacitor. Journal of Materiomics, 2022, 8, 239-246.                               | 2.8 | 14        |
| 45 | Structural and multiferroic properties of Nd and Mn co-doped 0.55BiFeMnO3-0.45BaTiO3 ceramics with high energy storage efficiency. Ceramics International, 2021, 47, 18800-18807.                                  | 2.3 | 14        |
| 46 | Ultrahigh energy storage density and superior discharge power density in a novel antiferroelectric<br>lead hafnate. Materials Today Physics, 2022, 24, 100681.                                                     | 2.9 | 14        |
| 47 | Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline<br>Sr(Ti1â^'xFex)O3â~'δ Thin Films. Nanomaterials, 2017, 7, 264.                                                               | 1.9 | 13        |
| 48 | Giant Negative Electrocaloric Effect in Anti-Ferroelectric<br>(Pb <sub>0.97</sub> La <sub>0.02</sub> )(Zr <sub>0.95</sub> Ti <sub>0.05</sub> )O <sub>3</sub> Ceramics.<br>ACS Omega, 2019, 4, 14650-14654.         | 1.6 | 13        |
| 49 | Large Electrocaloric Effect in Ferroelectric Materials. Wuji Cailiao Xuebao/Journal of Inorganic<br>Materials, 2014, 29, 6-12.                                                                                     | 0.6 | 13        |
| 50 | Electrode effect regulated resistance switching and selector characteristics in Nb doped SrTiO3 single crystal for potential cross-point memory applications. Journal of Alloys and Compounds, 2018, 730, 516-520. | 2.8 | 12        |
| 51 | Improvement of electrical conductivity and leakage current in co-precipitation derived Nd-doping<br>BiFeO3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 495-499.                    | 1.1 | 11        |
| 52 | The dielectric anomaly and pyroelectric properties of sol–gel derived (Pb,Cd,La)TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 3174-3178.                                        | 1.1 | 11        |
| 53 | Excellent Bidirectional Adjustable Multistage Resistive Switching Memory in<br>Bi <sub>2</sub> FeCrO <sub>6</sub> Thin Film. ACS Applied Materials & Interfaces, 2020, 12,<br>54168-54173.                         | 4.0 | 11        |
| 54 | Bipolar resistive switching characteristics of PbZrO3/LaNiO3 heterostructure thin films prepared by a sol–gel process. Ceramics International, 2021, 47, 5617-5623.                                                | 2.3 | 11        |

| #  | Article                                                                                                                                                                                                                             | IF      | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| 55 | Ultra-high dielectric tuning performance and double-set resistive switching effect achieved on the<br>Bi2NiMnO6 thin film prepared by sol–gel method. Journal of Colloid and Interface Science, 2022, 606,<br>913-919.              | 5.0     | 11                |
| 56 | Improvement of memristive properties in CuO films with a seed Cu layer. Applied Physics Letters, 2019, 114, 061602.                                                                                                                 | 1.5     | 10                |
| 57 | Resistive switching and optical properties of strontium ferrate titanate thin film prepared via chemical solution deposition. Journal of Advanced Ceramics, 2021, 10, 1001-1010.                                                    | 8.9     | 10                |
| 58 | Highâ€ŧemperature dielectric properties and impedance spectroscopy of<br>PbHf <sub>1â^'<i>x</i></sub> Sn <i><sub>x</sub></i> O <sub>3</sub> ceramics. IET Nanodielectrics, 2020, 3,<br>131-137.                                     | 2.0     | 10                |
| 59 | Diffuse phase transition and high-temperature dielectric relaxation study on (Bi0.5Na0.5)1-xBaxTiO3 ceramics. Physica B: Condensed Matter, 2016, 496, 20-25.                                                                        | 1.3     | 9                 |
| 60 | Phase structure analysis and pyroelectric energy harvesting performance of<br>Ba(Hf <sub><i>x</i></sub> Ti <sub>1<i>â€x</i></sub> )O <sub>3</sub> ceramics. Journal of the American<br>Ceramic Society, 2019, 102, 3623-3629.       | 1.9     | 9                 |
| 61 | Photo-induced negative differential resistance and carrier-transport mechanisms in<br>Bi <sub>2</sub> FeCrO <sub>6</sub> resistive switching memory devices. Journal of Materials<br>Chemistry C, 2021, 9, 13755-13760.             | 2.7     | 9                 |
| 62 | Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials, 2021, 11, 2705.                                                                                          | 1.9     | 9                 |
| 63 | Preparation of (Pb, Cd, La)TiO3 Phase Pure Powders and Thin Films by Sol-gel Processing. Journal of Materials Science Letters, 1998, 17, 1277-1279.                                                                                 | 0.5     | 8                 |
| 64 | Dielectric and Pyroelectric Properties of Compositionally Graded Pb(Zr1- <i>x</i> Ti <i>x</i> )O3 Thin<br>Films Prepared by Sol-gel Process. Chinese Journal of Chemical Physics, 2007, 20, 665-669.                                | 0.6     | 8                 |
| 65 | Oxygen vacancy effect on ionic conductivity and relaxation phenomenon of<br>Sr <sub><i>x</i></sub> Ba <sub>1–<i>x</i></sub> Nb <sub>2&lt;<br/>ceramics. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 227701.</sub>                    | ;/søb>( | ጋ& <b>k;</b> sub> |
| 66 | The enhanced magnetoelectric effect and piezoelectric properties in the lead-free<br>Bi3.15Nd0.85Ti3O12/La0.7Ca0.3MnO3 nano-multilayers composite thin films. Journal of Alloys and<br>Compounds, 2019, 777, 485-491.               | 2.8     | 7                 |
| 67 | Anneal temperature dependence of resistive switching and photoelectric properties of Bismuth<br>ferrite thin film prepared via sol–gel method. FlatChem, 2021, 28, 100266.                                                          | 2.8     | 7                 |
| 68 | Low leakage current in (Bi0.95La0.05)2NiMnO6 double-perovskite thin films prepared by chemical solution deposition. Materials Letters, 2014, 120, 23-25.                                                                            | 1.3     | 6                 |
| 69 | B-site non-stoichiometric<br>(Pb <sub>0.97</sub> La <sub>0.02</sub> )(Zr <sub>0.95</sub> Ti <sub>0.05</sub> )O <sub>3</sub><br>antiferroelectric ceramics for energy storage. Journal of Asian Ceramic Societies, 2018, 6, 240-246. | 1.0     | 6                 |
| 70 | Analog Memristive Characteristics and Conditioned Reflex Study Based on Au/ZnO/ITO Devices.<br>Electronics (Switzerland), 2018, 7, 141.                                                                                             | 1.8     | 6                 |
| 71 | Pyroelectric energy harvesting and ferroelectric properties of PbxSr1-xTiO3 ceramics. Journal of Asian Ceramic Societies, 2020, 8, 1147-1153.                                                                                       | 1.0     | 6                 |
| 72 | The defect related energy-storage properties of A-site off-stoichiometry ferroelectric ceramic. Applied Physics A: Materials Science and Processing, 2021, 127, 1.                                                                  | 1.1     | 6                 |

| #  | Article                                                                                                                                                                                                                              | IF               | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 73 | An Artificial Synapse Based on CsPbI3 Thin Film. Micromachines, 2022, 13, 284.                                                                                                                                                       | 1.4              | 6                 |
| 74 | LARGE PIEZOELECTRIC EFFECT IN LOW-TEMPERATURE-SINTERED LEAD-FREE (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3<br>THICK FILMS. Functional Materials Letters, 2012, 05, 1250029.                                                                       | 0.7              | 5                 |
| 75 | Improved electric property in SrTiO3–Bi2NiMnO6–SrTiO3 sandwich structural thin films.<br>Superlattices and Microstructures, 2015, 85, 653-657.                                                                                       | 1.4              | 5                 |
| 76 | An oxygen defect-related dielectric relaxation behaviors of lead-free Ba(Hf <sub> <i>x</i>) Tj ETQq0 0 0 rgBT /Ov<br/>Physics, 2018, 51, 485302.</sub>                                                                               | erlock 10<br>1.3 | Tf 50 627 Td<br>5 |
| 77 | Interfacial resistive switching properties of Sr2TiO4/SrTiO3 heterojunction thin films prepared via sol-gel process. Ceramics International, 2021, 47, 18808-18813.                                                                  | 2.3              | 5                 |
| 78 | Electrical and Pyroelectric Properties of Highly (001)â€Oriented<br>(Pb <sub>0.76</sub> Ca <sub>0.24</sub> )TiO <sub>3</sub> Thin Films Grown by a Sol–Gel Process.<br>Journal of the American Ceramic Society, 2004, 87, 1588-1590. | 1.9              | 4                 |
| 79 | Ferroelectric and Pyroelectric Properties of Highly (111)-oriented Nanocrystalline<br>Pb(Zr <sub>0.95</sub> Ti <sub>0.05</sub> )O <sub>3</sub> Thin Films. Chinese Journal of Chemical<br>Physics, 2007, 20, 763-767.                | 0.6              | 4                 |
| 80 | Relaxation Associated with Oxygen Vacancies at High Temperatures and Leakage Current in Ba x Sr1â^'x<br>TiO3 Ceramics. Journal of Electronic Materials, 2016, 45, 3174-3182.                                                         | 1.0              | 4                 |
| 81 | Impedance response and high temperature dielectric relaxation behavior in lead barium strontium zirconate ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 1582-1589.                                     | 1.1              | 4                 |
| 82 | Oxygen defect related high temperature dielectric relaxation behavior in (Ba,La)(Zr,Sn,Ti)O3 ceramics.<br>Applied Physics A: Materials Science and Processing, 2021, 127, 1.                                                         | 1,1              | 4                 |
| 83 | Oxygen vacancies-related high-temperature dielectric relaxation and pyroelectric energy harvesting<br>in lead-free Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33,<br>3024-3033.        | 1.1              | 4                 |
| 84 | Modified relaxor ferroelectrics in BiFeO3-(Ba,Sr)TiO3-BiScO3 ceramics for energy storage applications. Sustainable Materials and Technologies, 2022, , e00428.                                                                       | 1.7              | 4                 |
| 85 | Effect of annealing temperature on dielectric and pyroelectric property of highly (111)-oriented<br>(Pb0.98La0.02)(Zr0.95Ti0.05)0.995O3 thin films. Journal of Materials Science: Materials in Electronics,<br>2015, 26, 1784-1788.  | 1.1              | 3                 |
| 86 | High frequency single crystal ultrasonic transducers up to 100 MHz for high resolution ophthalmic imaging applications. , 2017, , .                                                                                                  |                  | 3                 |
| 87 | Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films.<br>Nanomaterials, 2019, 9, 1783.                                                                                                    | 1.9              | 3                 |
| 88 | Resistive switching behaviors of Au/CZO/FTO/glass heterostructures grown by magnetron sputtering.<br>Journal of Alloys and Compounds, 2020, 817, 152738.                                                                             | 2.8              | 3                 |
| 89 | High frequency single crystal ultrasonic transducers up to 100 MHz for high resolution ophthalmic imaging applications. , 2017, , .                                                                                                  |                  | 2                 |
| 90 | The transformation of digital to analog resistance switching behavior in<br>Bi <sub>2</sub> FeCrO <sub>6</sub> thin films. Journal of Asian Ceramic Societies, 2021, 9, 851-857.                                                     | 1.0              | 2                 |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The thermal conductivity and tolerance factor modulated ferroelectric thermal stability of<br>Ba0.955La0.03TiO3 relaxor ferroelectric. Journal of Materials Science: Materials in Electronics, 2022,<br>33, 7621-7635. | 1.1 | 2         |
| 92 | Optical Properties of Nanocrystalline (Ba,Ca)TiO <sub>3</sub> Thin Films Grown on Pt-Coated Silicon<br>Substrates. Ferroelectrics, 2010, 405, 268-274.                                                                 | 0.3 | 1         |
| 93 | Influence of LaNiO3 and LaNi0.5Mn0.5O3 Buffer Layers on the Structural and Electrical Properties of BiNi0.5Mn0.5O3 Thin Films. Journal of Electronic Materials, 2015, 44, 3783-3787.                                   | 1.0 | 1         |
| 94 | High temperature dielectric anomaly and impedance analysis of (Pb1â^3x/2La x )(Zr0.95Ti0.05)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 14864-14873.                                | 1.1 | 1         |
| 95 | Switching Characteristics and High-Temperature Dielectric Relaxation Behaviours of Pb(Zn1/3Nb2/3)0.91Ti0.09O3 Single Crystal. Materials, 2017, 10, 349.                                                                | 1.3 | 1         |
| 96 | Non-Volatile Regulation of Magnetism via Electric Fields in Polycrystal FeSi/(011) PMN-0.32PT<br>Heterostructures. Magnetochemistry, 2020, 6, 57.                                                                      | 1.0 | 1         |
| 97 | Comparison of internal friction and torsion strain spectra for the cubic–tetragonal transformation of PMNâ€32PT crystal. Physica Status Solidi (B): Basic Research, 2011, 248, 2103-2106.                              | 0.7 | 0         |
| 98 | Interfacial resistive switching of Ruddlesden–Popper phase strontium titanate thin film by charge-modulated Schottky barrier. FlatChem, 2021, 27, 100239.                                                              | 2.8 | 0         |