
## Kazuyuki Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6837063/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | In-situ 3D observation of hydrogen-assisted particle damage behavior in 7075 Al alloy by synchrotron<br>X-ray tomography. Acta Materialia, 2022, 227, 117658.                                                   | 3.8 | 24        |
| 2  | Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles. Acta Materialia, 2022, 236, 118110.                                                                   | 3.8 | 22        |
| 3  | Tomography for Bridging Nano and Macro: Semi-spontaneous linterfacial Debonding. Materia Japan,<br>2021, 60, 13-18.                                                                                             | 0.1 | 0         |
| 4  | High-energy x-ray nanotomography introducing an apodization Fresnel zone plate objective lens.<br>Review of Scientific Instruments, 2021, 92, 023701.                                                           | 0.6 | 25        |
| 5  | Assessment of Hydrogen Accumulation Behavior in Al–Zn–Mg Alloy under Strain with Kelvin Force<br>Microscopy. Materials Transactions, 2021, 62, 636-641.                                                         | 0.4 | 0         |
| 6  | Damage micromechanisms of stress corrosion cracking in Al-Mg alloy with high magnesium content.<br>Corrosion Science, 2021, 184, 109343.                                                                        | 3.0 | 25        |
| 7  | Structural Phase Transformations of Gallium Ion Irradiated SUS304 Steel. Nippon Kinzoku<br>Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 239-246.                                               | 0.2 | 1         |
| 8  | Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen<br>Influence. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2020, 51, 1-19. | 1.1 | 15        |
| 9  | The possible transition mechanism for the meta-stable phase in the 7xxx aluminium. Materials Science and Technology, 2020, 36, 1621-1627.                                                                       | 0.8 | 8         |
| 10 | Influence of nanovoids in the hydrogen embrittlement fracture of Al–Zn–Mg–Cu alloys. Materialia,<br>2020, 11, 100667.                                                                                           | 1.3 | 12        |
| 11 | Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys. Scientific<br>Reports, 2020, 10, 1998.                                                                                        | 1.6 | 38        |
| 12 | Hydrogen Trapping in Mg <sub>2</sub> Si and<br>Al <sub>7</sub> FeCu <sub>2</sub> Intermetallic Compounds in Aluminum Alloy:<br>First-Principles Calculations. Materials Transactions, 2020, 61, 1907-1911.      | 0.4 | 20        |
| 13 | Analysis of Hydrogen Content in Pure Palladium via Neutron Radiography and Tomography. Nippon<br>Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 270-275.                                 | 0.2 | 0         |
| 14 | Assessment of hydrogen embrittlement via image-based techniques in Al–Zn–Mg–Cu aluminum alloys.<br>Acta Materialia, 2019, 176, 96-108.                                                                          | 3.8 | 63        |
| 15 | Influence of hydrogen on stress corrosion cracking behavior in Al–10Mg alloy. Keikinzoku/Journal of<br>Japan Institute of Light Metals, 2019, 69, 223-227.                                                      | 0.1 | 0         |
| 16 | An unreported precipitate orientation relationship in Al-Zn-Mg based alloys. Materials<br>Characterization, 2019, 158, 109958.                                                                                  | 1.9 | 20        |
| 17 | Neutron Imaging Analysis of Hydrogen Content in Pure Palladium and Aluminum Alloys. Nippon<br>Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 434-440.                                    | 0.2 | 1         |
| 18 | Hydrogen partitioning behavior and related hydrogen embrittlement in Al-Zn-Mg alloys. Engineering<br>Fracture Mechanics, 2019, 216, 106503.                                                                     | 2.0 | 23        |

Казичикі Ѕнімізи

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optimization of Mechanical Properties in Aluminum Alloys <i>via</i> Hydrogen Partitioning<br>Control. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 240-253.                | 0.1 | 0         |
| 20 | Hydrogen desorption behavior in Al–8%Zn–1%Mg alloy. Keikinzoku/Journal of Japan Institute of Light<br>Metals, 2019, 69, 186-193.                                                                           | 0.1 | 2         |
| 21 | Atomic scale HAADF-STEM study of η′ and η 1 phases in peak-aged Al–Zn–Mg alloys. Journal of Materials<br>Science, 2018, 53, 4598-4611.                                                                     | 1.7 | 62        |
| 22 | Evolution Behavior of Hydrogen-Induced Nano Voids in Al–Zn–Mg–Cu Aluminum Alloys under<br>Loading. Materials Transactions, 2018, 59, 1532-1535.                                                            | 0.4 | 6         |
| 23 | Microstructure evolution in a hydrogen charged and aged Al–Zn–Mg alloy. Materialia, 2018, 3, 50-56.                                                                                                        | 1.3 | 11        |
| 24 | The Role of Hydrogen on the Local Fracture Toughness Properties of 7XXX Aluminum Alloys.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49,<br>5368-5381. | 1.1 | 6         |
| 25 | Influence of hydrogen on strain localization and fracture behavior in Al Zn Mg Cu aluminum alloys.<br>Acta Materialia, 2018, 159, 332-343.                                                                 | 3.8 | 55        |
| 26 | Size and distribution of micropores and voids in 5052 aluminum alloys during tensile deformation.<br>Keikinzoku/Journal of Japan Institute of Light Metals, 2018, 68, 630-634.                             | 0.1 | 0         |
| 27 | Precipitation structure and mechanical properties on peak-aged Al–Zn–Mg alloys including different<br>with some Zn/Mg ratios. Keikinzoku/Journal of Japan Institute of Light Metals, 2017, 67, 162-167.    | 0.1 | 3         |
| 28 | Hydrogen partitioning behavior and hydrogen embrittlement in Al-Zn-Mg alloys. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, OS15-02.                                              | 0.0 | 0         |
| 29 | OS0801-143 Hydrogen embrittlement in Al-Zn-Mg alloys. The Proceedings of the Materials and Mechanics Conference, 2015, 2015, _OS0801-14OS0801-14.                                                          | 0.0 | 0         |
| 30 | Formation behaviour of blister in cast aluminium alloy. International Journal of Cast Metals<br>Research, 2014, 27, 369-377.                                                                               | 0.5 | 22        |
| 31 | Dynamic Observation of FeSiBPCu Alloys for Crystallization via MeV Electron Irradiation. Nippon<br>Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 364-368.                          | 0.2 | 7         |
| 32 | Compression and recovery micro-mechanisms in flexible graphite. Carbon, 2013, 59, 184-191.                                                                                                                 | 5.4 | 15        |
| 33 | Cavitation during high-temperature deformation in Al–Mg alloys. Acta Materialia, 2013, 61, 2403-2413.                                                                                                      | 3.8 | 32        |
| 34 | 3D/4D fracture mechanics evaluation on shear band of aluminum alloys. Keikinzoku/Journal of Japan<br>Institute of Light Metals, 2013, 63, 188-195.                                                         | 0.1 | 1         |
| 35 | Application of Dual-Energy K-Edge Subtraction Imaging to Assessment of Heat Treatments in Al-Cu<br>Alloys. Materials Transactions, 2010, 51, 2045-2048.                                                    | 0.4 | 22        |
| 36 | Enhanced hydrogen embrittlement of Pd-coated niobium metal membrane detected by in situ small punch test under hydrogen permeation. Journal of Alloys and Compounds, 2007, 446-447, 588-592.               | 2.8 | 56        |