Steven H Zeisel

List of Publications by Citations

Source: https://exaly.com/author-pdf/6836938/steven-h-zeisel-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 306
 17,299
 76
 121

 papers
 citations
 h-index
 g-index

 330
 19,247
 4.6
 7.1

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
306	Choline: an essential nutrient for public health. <i>Nutrition Reviews</i> , 2009 , 67, 615-23	6.4	566
305	Concentrations of choline-containing compounds and betaine in common foods. <i>Journal of Nutrition</i> , 2003 , 133, 1302-7	4.1	498
304	Choline: critical role during fetal development and dietary requirements in adults. <i>Annual Review of Nutrition</i> , 2006 , 26, 229-50	9.9	480
303	Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. <i>Gastroenterology</i> , 2011 , 140, 976-86	13.3	424
302	Choline, an essential nutrient for humans. <i>FASEB Journal</i> , 1991 , 5, 2093-2098	0.9	370
301	Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. <i>Nature Communications</i> , 2014 , 5, 3746	17.4	362
300	Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. <i>Journal of Nutrition</i> , 2002 , 132, 2333S-2335S	4.1	359
299	Dietary choline: biochemistry, physiology, and pharmacology. <i>Annual Review of Nutrition</i> , 1981 , 1, 95-12	1 1 9.9	336
298	Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. <i>Current Opinion in Gastroenterology</i> , 2012 , 28, 159-65	3	258
297	Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. <i>FASEB Journal</i> , 2006 , 20, 43-9	0.9	248
296	Choline: an essential nutrient for humans. <i>Nutrition</i> , 2000 , 16, 669-71	4.8	239
295	Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. <i>Analytical Chemistry</i> , 2002 , 74, 4734-40	7.8	232
294	Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. <i>American Journal of Clinical Nutrition</i> , 2002 , 75, 126-36	7	223
293	Sex and menopausal status influence human dietary requirements for the nutrient choline. <i>American Journal of Clinical Nutrition</i> , 2007 , 85, 1275-85	7	216
292	Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. <i>Annual Review of Nutrition</i> , 2017 , 37, 157-181	9.9	204
291	S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 4234-9	11.5	178
290	Diet and carcinogenesis. <i>Carcinogenesis</i> , 1993 , 14, 2205-17	4.6	178

(2003-2005)

289	Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). <i>FASEB Journal</i> , 2005 , 19, 1266-71	0.9	174
288	Importance of methyl donors during reproduction. <i>American Journal of Clinical Nutrition</i> , 2009 , 89, 673S	5- 7 S	171
287	Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. <i>American Journal of Clinical Nutrition</i> , 2014 , 100, 778-86	7	165
286	Common genetic polymorphisms affect the human requirement for the nutrient choline. <i>FASEB Journal</i> , 2006 , 20, 1336-44	0.9	163
285	Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. <i>American Journal of Clinical Nutrition</i> , 2006 , 83, 905-11	7	163
284	Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16025-30	11.5	157
283	The fetal origins of memory: the role of dietary choline in optimal brain development. <i>Journal of Pediatrics</i> , 2006 , 149, S131-6	3.6	154
282	Epigenetic mechanisms for nutrition determinants of later health outcomes. <i>American Journal of Clinical Nutrition</i> , 2009 , 89, 1488S-1493S	7	152
281	Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. <i>FASEB Journal</i> , 2007 , 21, 2622-32	0.9	150
280	Choline availability alters embryonic development of the hippocampus and septum in the rat. <i>Developmental Brain Research</i> , 1999 , 113, 13-20		149
280 279		4.1	149 149
	Developmental Brain Research, 1999, 113, 13-20 Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas.	4.1	
279	Developmental Brain Research, 1999, 113, 13-20 Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. Journal of Nutrition, 1986, 116, 50-8 Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to	4.1 7 5.4	149
279 278	Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. Journal of Nutrition, 1986, 116, 50-8 Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women. American Journal of Clinical Nutrition, 2002, 76, 1126-37 Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. Journal of Biological Chemistry,	7	149
279 278 277	Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. Journal of Nutrition, 1986, 116, 50-8 Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women. American Journal of Clinical Nutrition, 2002, 76, 1126-37 Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. Journal of Biological Chemistry, 2011, 286, 36258-67 Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and	7 5·4	149 141 140
279 278 277 276	Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. Journal of Nutrition, 1986, 116, 50-8 Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women. American Journal of Clinical Nutrition, 2002, 76, 1126-37 Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. Journal of Biological Chemistry, 2011, 286, 36258-67 Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB Journal, 1999, 13, 135-142 Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate	7 5.4 0.9	149 141 140
279 278 277 276 275	Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. <i>Journal of Nutrition</i> , 1986 , 116, 50-8 Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women. <i>American Journal of Clinical Nutrition</i> , 2002 , 76, 1126-37 Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. <i>Journal of Biological Chemistry</i> , 2011 , 286, 36258-67 Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. <i>FASEB Journal</i> , 1999 , 13, 135-142 Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency. <i>FASEB Journal</i> , 2003 , 17, 512-4 Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. <i>FASEB</i>	7 5.4 0.9	149 141 140 134

271	Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. <i>Journal of Nutrition</i> , 2004 , 134, 162-6	4.1	126
270	Antioxidants, programmed cell death, and cancer. <i>Nutrition Research</i> , 2001 , 21, 295-307	4	126
269	Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. <i>Brain Research</i> , 1979 , 179, 319-27	3.7	126
268	Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. <i>Journal of Nutrition</i> , 2003 , 133, 3386-91	4.1	125
267	Evidence-based criteria in the nutritional context. <i>Nutrition Reviews</i> , 2010 , 68, 478-84	6.4	124
266	Carbohydrate craving in obese people: Suppression by treatments affecting serotoninergic transmission. <i>International Journal of Eating Disorders</i> , 1981 , 1, 2-15	6.3	124
265	Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. <i>Journal of Nutrition</i> , 1994 , 124, 2197-203	4.1	123
264	Status of nutrition education in medical schools. <i>American Journal of Clinical Nutrition</i> , 2006 , 83, 941S-9	4 / 1S	120
263	Perinatal choline influences brain structure and function. <i>Nutrition Reviews</i> , 2006 , 64, 197-203	6.4	120
262	Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. <i>Developmental Brain Research</i> , 1999 , 115, 123-9		120
261	Nutrition in medicine: nutrition education for medical students and residents. <i>Nutrition in Clinical Practice</i> , 2010 , 25, 471-80	3.6	119
260	Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. <i>American Journal of Clinical Nutrition</i> , 2005 , 81, 440-4	7	118
259	Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. <i>FASEB Journal</i> , 2001 , 15, 1739-44	0.9	117
258	Nutritional importance of choline for brain development. <i>Journal of the American College of Nutrition</i> , 2004 , 23, 621S-626S	3.5	112
257	Choline metabolism and risk of breast cancer in a population-based study. FASEB Journal, 2008, 22, 204	50532	111
256	Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. <i>BMC Cardiovascular Disorders</i> , 2007 , 7, 20	2.3	110
255	Conversion of dietary choline to trimethylamine and dimethylamine in rats: dose-response relationship. <i>Journal of Nutrition</i> , 1989 , 119, 800-4	4.1	109
254	Choline: needed for normal development of memory. <i>Journal of the American College of Nutrition</i> , 2000 , 19, 528S-531S	3.5	108

(2007-2002)

253	Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. <i>FASEB Journal</i> , 2002 , 16, 619-21	0.9	103
252	Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12834-9	11.5	102
251	Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. <i>Biochemical Journal</i> , 2003 , 370, 987-93	3.8	102
250	DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. <i>American Journal of Clinical Nutrition</i> , 2013 , 97, 1217-27	7	101
249	Failure to thrive. <i>Pediatric Clinics of North America</i> , 1988 , 35, 1187-206	3.6	100
248	Choline, Other Methyl-Donors and Epigenetics. <i>Nutrients</i> , 2017 , 9,	6.7	96
247	Measurement of choline and choline metabolite concentrations using high-pressure liquid chromatography and gas chromatography-mass spectrometry. <i>Analytical Biochemistry</i> , 1989 , 180, 85-90	3.1	95
246	Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. <i>American Journal of Clinical Nutrition</i> , 2006 , 84, 88-94	7	94
245	Microbiota-Dependent Metabolite Trimethylamine N-Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). <i>Journal of the American Heart Association</i> , 2016 , 5,	6	92
244	Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. <i>FASEB Journal</i> , 2010 , 24, 2962-75	0.9	92
243	Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. <i>American Journal of Clinical Nutrition</i> , 2010 , 92, 336-46	7	90
242	Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. <i>American Journal of Clinical Nutrition</i> , 2004 , 80, 163-70	7	90
241	Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. <i>Nutrition and Cancer</i> , 2004 , 48, 160-70	2.8	87
240	Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. <i>FASEB Journal</i> , 1996 , 10, 510-6	0.9	87
239	Lack of significant genotoxicity of purified soy isoflavones (genistein, daidzein, and glycitein) in 20 patients with prostate cancer. <i>American Journal of Clinical Nutrition</i> , 2003 , 77, 875-82	7	86
238	Lecithin and choline in human health and disease. <i>Nutrition Reviews</i> , 1994 , 52, 327-39	6.4	85
237	Second trimester folate status and preterm birth. <i>American Journal of Obstetrics and Gynecology</i> , 2004 , 191, 1851-7	6.4	84
236	The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. <i>American Journal of Clinical Nutrition</i> , 2007 , 86, 1073-81	7	83

235	Dietary choline and betaine and the risk of distal colorectal adenoma in women. <i>Journal of the National Cancer Institute</i> , 2007 , 99, 1224-31	9.7	81
234	Homocysteine metabolism in ZDF (type 2) diabetic rats. <i>Diabetes</i> , 2005 , 54, 3245-51	0.9	81
233	Choline deficiency. <i>Journal of Nutritional Biochemistry</i> , 1990 , 1, 332-49	6.3	81
232	The nutritional phenotype in the age of metabolomics. <i>Journal of Nutrition</i> , 2005 , 135, 1613-6	4.1	78
231	Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene. <i>Journal of Neurochemistry</i> , 2004 , 89, 1252-9	6	77
230	Dietary choline requirements of women: effects of estrogen and genetic variation. <i>American Journal of Clinical Nutrition</i> , 2010 , 92, 1113-9	7	75
229	High intakes of choline and betaine reduce breast cancer mortality in a population-based study. <i>FASEB Journal</i> , 2009 , 23, 4022-8	0.9	75
228	Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. <i>Nutritional Neuroscience</i> , 2009 , 12, 190-202	3.6	72
227	BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. <i>Breast Cancer Research and Treatment</i> , 2009 , 115, 397-404	4.4	72
226	The role of dietary supplements during cancer therapy. <i>Journal of Nutrition</i> , 2003 , 133, 3794S-3799S	4.1	71
225	Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. Journal of Biological Chemistry, 2011 , 286, 1649-58	5.4	67
224	Choline supplementation in children with fetal alcohol spectrum disorders: a randomized, double-blind, placebo-controlled trial. <i>American Journal of Clinical Nutrition</i> , 2015 , 102, 1113-25	7	66
223	Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2012 , 733, 34-8	3.3	66
222	Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: a randomized, double-blind, placebo-controlled trial. <i>American Journal of Clinical Nutrition</i> , 2012 , 96, 1465-72	7	66
221	Nutrigenomics and metabolomics will change clinical nutrition and public health practice: insights from studies on dietary requirements for choline. <i>American Journal of Clinical Nutrition</i> , 2007 , 86, 542-8	7	66
220	Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. <i>Teratology</i> , 2001 , 64, 114-22		66
219	The measurement of dimethylamine, trimethylamine, and trimethylamine N-oxide using capillary gas chromatography-mass spectrometry. <i>Analytical Biochemistry</i> , 1990 , 187, 234-9	3.1	66
218	Diet and sleep patterns in newborn infants. New England Journal of Medicine, 1983, 309, 1147-9	59.2	65

217	Elevated choline concentration in neonatal plasma. Life Sciences, 1980, 26, 1827-31	6.8	64
216	Nutritional genomics: defining the dietary requirement and effects of choline. <i>Journal of Nutrition</i> , 2011 , 141, 531-4	4.1	63
215	Efficacy of Maternal Choline Supplementation During Pregnancy in Mitigating Adverse Effects of Prenatal Alcohol Exposure on Growth and Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. <i>Alcoholism: Clinical and Experimental Research</i> , 2018 , 42, 1327-1341	3.7	63
214	Choline Tole in maintaining liver function: new evidence for epigenetic mechanisms. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2013 , 16, 339-45	3.8	61
213	Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. <i>Journal of Cellular Biochemistry</i> , 2003 , 89, 254-61	4.7	60
212	Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. <i>Clinical Chemistry and Laboratory Medicine</i> , 2013 , 51, 467-75	5.9	59
211	Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. <i>Biomedical Applications</i> , 2001 ,		58
210	760, 191-205 Effect of chronic choline deficiency in rats on liver folate content and distribution. <i>Journal of Nutritional Biochemistry</i> , 1992 , 3, 519-522	6.3	58
209	Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. <i>IUBMB Life</i> , 2007 , 59, 380-7	4.7	56
208	Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not. <i>Journal of Nutritional Biochemistry</i> , 2007 , 18, 380-90	6.3	56
207	Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB Journal, 2001, 15, 170	41.9	56
206	Bioavailability of choline and choline esters from milk in rat pups. <i>Journal of Nutritional Biochemistry</i> , 1996 , 7, 457-464	6.3	56
205	Nutrition in pregnancy: the argument for including a source of choline. <i>International Journal of Womens Health</i> , 2013 , 5, 193-9	2.8	55
204	Effects of choline deficiency and methotrexate treatment upon rat liver. <i>Journal of Nutritional Biochemistry</i> , 1990 , 1, 533-41	6.3	55
203	A brief history of choline. Annals of Nutrition and Metabolism, 2012, 61, 254-8	4.5	54
202	Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. <i>Journal of Nutrition</i> , 2010 , 140, 1162-6	4.1	54
201	Impact of Frequency of Multi-Vitamin/Multi-Mineral Supplement Intake on Nutritional Adequacy and Nutrient Deficiencies in U.S. Adults. <i>Nutrients</i> , 2017 , 9,	6.7	53
200	Choline: Dietary Requirements and Role in Brain Development. <i>Nutrition Today</i> , 2007 , 42, 181-186	1.6	53

199	Is maternal diet supplementation beneficial? Optimal development of infant depends on mother diet. <i>American Journal of Clinical Nutrition</i> , 2009 , 89, 685S-7S	7	50
198	Ad libitum choline intake in healthy individuals meets or exceeds the proposed adequate intake level. <i>Journal of Nutrition</i> , 2005 , 135, 826-9	4.1	49
197	Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. <i>Nutrition Journal</i> , 2009 , 8, 14	4.3	47
196	Dietary Modulation of the Epigenome. <i>Physiological Reviews</i> , 2018 , 98, 667-695	47.9	46
195	Choline supplementation in children with fetal alcohol spectrum disorders has high feasibility and tolerability. <i>Nutrition Research</i> , 2013 , 33, 897-904	4	46
194	Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. <i>FASEB Journal</i> , 2014 , 28, 2970-8	0.9	46
193	Deletion of murine choline dehydrogenase results in diminished sperm motility. <i>FASEB Journal</i> , 2010 , 24, 2752-61	0.9	46
192	Choline- and betaine-defined diets for use in clinical research and for the management of trimethylaminuria. <i>Journal of the American Dietetic Association</i> , 2004 , 104, 1836-45		46
191	Effects of prolonged (1 year) choline deficiency and subsequent re-feeding of choline on 1,2-sn-diradylglycerol, fatty acids and protein kinase C in rat liver. <i>Carcinogenesis</i> , 1995 , 16, 327-34	4.6	46
190	The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. <i>Toxicology and Applied Pharmacology</i> , 2012 , 264, 439-50	4.6	45
189	Docosahexaenoic acid in plasma phosphatidylcholine may be a potential marker for in vivo phosphatidylethanolamine N-methyltransferase activity in humans. <i>American Journal of Clinical Nutrition</i> , 2011 , 93, 968-74	7	45
188	What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders. <i>Molecular Neurobiology</i> , 2011 , 44, 185-91	6.2	44
187	Methyl-group donors cannot prevent apoptotic death of rat hepatocytes induced by choline-deficiency. <i>Journal of Cellular Biochemistry</i> , 1997 , 64, 196-208	4.7	44
186	Maternal choline availability alters the localization of p15Ink4B and p27Kip1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. <i>Developmental Neuroscience</i> , 2001 , 23, 100-6	2.2	44
185	Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. <i>Computational and Structural Biotechnology Journal</i> , 2013 , 4, e2013010	1 3 .8	43
184	Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. <i>FASEB Journal</i> , 2015 , 29, 418-32	0.9	42
183	Rapid LC-MRM-MS assay for simultaneous quantification of choline, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in human plasma and urine. <i>Electrophoresis</i> , 2015 , 36, 2207-221	4 ^{3.6}	42
182	Choline availability during embryonic development alters the localization of calretinin in developing and aging mouse hippocampus. <i>Nutritional Neuroscience</i> , 2003 , 6, 129-34	3.6	42

(2020-2010)

181	Choline and betaine intake and the risk of colorectal cancer in men. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2010 , 19, 884-7	4	41	
180	Choline intake and risk of lethal prostate cancer: incidence and survival. <i>American Journal of Clinical Nutrition</i> , 2012 , 96, 855-63	7	41	
179	The betaine and choline content of a whole wheat flour compared to other mill streams. <i>Journal of Cereal Science</i> , 2007 , 46, 93-95	3.8	41	
178	Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. <i>Cellular Physiology and Biochemistry</i> , 2005 , 15, 59-68	3.9	40	
177	An in vitro study of choline uptake by intestine from neonatal and adult rats. <i>Pediatric Research</i> , 1986 , 20, 768-72	3.2	40	
176	Mono-, di- and trimethylamine in human gastric fluid: potential substrates for nitrosodimethylamine formation. <i>Carcinogenesis</i> , 1988 , 9, 179-81	4.6	40	
175	Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain. <i>Molecular Brain Research</i> , 2005 , 134, 309-22		39	
174	Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice. <i>Gastroenterology</i> , 2015 , 148, 1012-1023.e14	13.3	38	
173	The supply of choline is important for fetal progenitor cells. <i>Seminars in Cell and Developmental Biology</i> , 2011 , 22, 624-8	7.5	38	
172	Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells. <i>Journal of Nutrition</i> , 2002 , 132, 1840-7	4.1	38	
171	Choline, homocysteine, and pregnancy. American Journal of Clinical Nutrition, 2005, 82, 719-20	7	38	
170	Choline: The Underconsumed and Underappreciated Essential Nutrient. <i>Nutrition Today</i> , 2018 , 53, 240-	2536	38	
169	Contribution of Dietary Supplements to Nutritional Adequacy in Various Adult Age Groups. <i>Nutrients</i> , 2017 , 9,	6.7	37	
168	Effects of a high daily dose of soy isoflavones on DNA damage, apoptosis, and estrogenic outcomes in healthy postmenopausal women: a phase I clinical trial. <i>Menopause</i> , 2008 , 15, 684-92	2.5	37	
167	Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. <i>FASEB Journal</i> , 2016 , 30, 1566-78	0.9	37	
166	Opposing regulation of choline deficiency-induced apoptosis by p53 and nuclear factor kappaB. <i>Journal of Biological Chemistry</i> , 2001 , 276, 41197-204	5.4	36	
165	Diethanolamine induces hepatic choline deficiency in mice. <i>Toxicological Sciences</i> , 2002 , 67, 38-45	4.4	36	
164	Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. <i>Advances in Nutrition</i> , 2020 , 11, 200-215	10	35	

163	Genetic polymorphisms in methyl-group metabolism and epigenetics: lessons from humans and mouse models. <i>Brain Research</i> , 2008 , 1237, 5-11	3.7	35
162	Choline. Advances in Nutrition, 2018, 9, 58-60	10	34
161	Antioxidants suppress apoptosis. <i>Journal of Nutrition</i> , 2004 , 134, 3179S-3180S	4.1	34
160	Glycerophosphocholine and phosphocholine are the major choline metabolites in rat milk. <i>Journal of Nutrition</i> , 1993 , 123, 1762-8	4.1	34
159	Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt-/- mouse. <i>Journal of Biological Chemistry</i> , 2010 , 285, 1008-15	5.4	33
158	Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. <i>Journal of Neurodevelopmental Disorders</i> , 2020 , 12, 9	4.6	32
157	Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. <i>Annual Review of Food Science and Technology</i> , 2020 , 11, 71-92	14.7	32
156	Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. <i>FASEB Journal</i> , 2016 , 30, 141-8	0.9	32
155	Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. <i>FASEB Journal</i> , 2013 , 27, 1674-89	0.9	32
154	Choline availability modulates the expression of TGFbeta1 and cytoskeletal proteins in the hippocampus of developing rat brain. <i>Neurochemical Research</i> , 1998 , 23, 751-8	4.6	32
153	Are dietary choline and betaine intakes determinants of total homocysteine concentration?. <i>American Journal of Clinical Nutrition</i> , 2010 , 91, 1303-10	7	31
152	Mouse betaine-homocysteine S-methyltransferase deficiency reduces body fat via increasing energy expenditure and impairing lipid synthesis and enhancing glucose oxidation in white adipose tissue. <i>Journal of Biological Chemistry</i> , 2012 , 287, 16187-98	5.4	31
151	Astronaut ophthalmic syndrome. FASEB Journal, 2017, 31, 3746-3756	0.9	30
150	Metabolomic Approaches to Explore Chemical Diversity of Human Breast-Milk, Formula Milk and Bovine Milk. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	30
149	Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. <i>American Journal of Clinical Nutrition</i> , 2017 , 105, 1283-1290	7	29
148	Choline deficiency causes increased localization of transforming growth factor-beta1 signaling proteins and apoptosis in the rat liver. <i>Pathobiology</i> , 1997 , 65, 264-70	3.6	29
147	Deletion of the Pemt gene increases progenitor cell mitosis, DNA and protein methylation and decreases calretinin expression in embryonic day 17 mouse hippocampus. <i>Developmental Brain Research</i> , 2004 , 149, 121-9		29
146	Choline and hepatocarcinogenesis in the rat. <i>Advances in Experimental Medicine and Biology</i> , 1995 , 375, 65-74	3.6	29

(2019-2005)

145	Maternal dietary choline availability alters the balance of netrin-1 and DCC neuronal migration proteins in fetal mouse brain hippocampus. <i>Developmental Brain Research</i> , 2005 , 159, 149-54		28	
144	Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. <i>Molecular Genetics and Metabolism</i> , 2015 , 116, 44-52	3.7	27	
143	Adiponectin lowers glucose production by increasing SOGA. <i>American Journal of Pathology</i> , 2010 , 177, 1936-45	5.8	27	
142	The evolution of Nutrition in Medicine, a computer-assisted nutrition curriculum. <i>American Journal of Clinical Nutrition</i> , 2006 , 83, 956S-962S	7	25	
141	Getting nutrition education into medical schools: a computer-based approach. <i>American Journal of Clinical Nutrition</i> , 2000 , 72, 868S-76S	7	25	
140	Inadequate intake of nutrients essential for neurodevelopment in children with fetal alcohol spectrum disorders (FASD). <i>Neurotoxicology and Teratology</i> , 2013 , 39, 128-32	3.9	23	
139	Contribution of Dietary Supplements to Nutritional Adequacy by Socioeconomic Subgroups in Adults of the United States. <i>Nutrients</i> , 2017 , 10,	6.7	23	
138	1,2-sn-diacylglycerol accumulates in choline-deficient liver. A possible mechanism of hepatic carcinogenesis via alteration in protein kinase C activity?. <i>FEBS Letters</i> , 1989 , 243, 267-70	3.8	22	
137	Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function. <i>PLoS ONE</i> , 2012 , 7, e36047	3.7	21	
136	Effects of betaine in a murine model of mild cystathionine-beta-synthase deficiency. <i>Metabolism:</i> Clinical and Experimental, 2004 , 53, 594-9	12.7	21	
135	Choline. Advances in Experimental Medicine and Biology, 1996 , 131-141	3.6	21	
134	Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not. <i>American Journal of Clinical Nutrition</i> , 2007 , 86, 230-9	7	20	
133	Betaine Supplementation and Blood Lipids: Fact or Artifact?. Nutrition Reviews, 2006, 64, 77-79	6.4	20	
132	Is there a metabolic basis for dietary supplementation?. <i>American Journal of Clinical Nutrition</i> , 2000 , 72, 507S-11S	7	20	
131	Contribution of Dietary Supplements to Nutritional Adequacy in Race/Ethnic Population Subgroups in the United States. <i>Nutrients</i> , 2017 , 9,	6.7	18	
130	Formation of trimethylamine from dietary choline by Streptococcus sanguis I, which colonizes the mouth. <i>Journal of Nutritional Biochemistry</i> , 1990 , 1, 89-97	6.3	17	
129	Procarbazine carcinogenicity in methotrexate-treated or lipotrope-deficient male rats. <i>Carcinogenesis</i> , 1990 , 11, 1491-5	4.6	17	
128	Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO). <i>Nutrients</i> , 2019 , 11,	6.7	16	

127	Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism. <i>Annals of Nutrition and Metabolism</i> , 2012 , 60 Suppl 3, 19-25	4.5	16
126	Choline. Advances in Nutrition, 2010, 1, 46-8	10	16
125	Lipid synthesis and secretion by primary cultures of rat mammary epithelial cells. <i>Journal of Cellular Physiology</i> , 1993 , 157, 469-80	7	16
124	The betaine content of sweat from adolescent females. <i>Journal of the International Society of Sports Nutrition</i> , 2010 , 7, 3	4.5	15
123	MicroRNA-129-5p is regulated by choline availability and controls EGF receptor synthesis and neurogenesis in the cerebral cortex. <i>FASEB Journal</i> , 2019 , 33, 3601-3612	0.9	15
122	Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort. <i>FASEB Journal</i> , 2015 , 29, 3426-35	0.9	14
121	Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. <i>FASEB Journal</i> , 2015 , 29, 1663-75	0.9	13
120	Folate 2012 , 321-342		13
119	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>World Review of Nutrition and Dietetics</i> , 2010 , 101, 73-83	0.2	13
118	A p53-dependent G1 checkpoint function is not required for induction of apoptosis by acute choline deficiency in immortalized rat hepatocytes in culture. <i>Journal of Nutritional Biochemistry</i> , 1998 , 9, 476-481	6.3	13
117	People with fatty liver are more likely to have the PEMT rs7946 SNP, yet populations with the mutant allele do not have fatty liver. <i>FASEB Journal</i> , 2006 , 20, 2181-2182	0.9	13
116	Diet, apoptosis, and carcinogenesis. Advances in Experimental Medicine and Biology, 1997 , 422, 97-107	3.6	13
115	A Conceptual Framework for Studying and Investing in Precision Nutrition. <i>Frontiers in Genetics</i> , 2019 , 10, 200	4.5	12
114	Niacin 2012 , 293-306		12
113	Antioxidants and nutrition support. Current Opinion in Clinical Nutrition and Metabolic Care, 1999, 2, 1-3	3.8	12
112	Feasibility and Acceptability of Maternal Choline Supplementation in Heavy Drinking Pregnant Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. <i>Alcoholism: Clinical and Experimental Research</i> , 2018 , 42, 1315-1326	3.7	11
111	Highlights of the 2012 Research Workshop: Using nutrigenomics and metabolomics in clinical nutrition research. <i>Journal of Parenteral and Enteral Nutrition</i> , 2013 , 37, 190-200	4.2	10
110	Reduced brain volume and impaired memory in betaine homocysteine S-methyltransferase knockout mice. <i>Applied Physiology, Nutrition and Metabolism</i> , 2017 , 42, 1228-1231	3	10

(2012-2012)

109	The nutrigenetics and nutrigenomics of the dietary requirement for choline. <i>Progress in Molecular Biology and Translational Science</i> , 2012 , 108, 159-77	4	10
108	Perspectives from the symposium: The role of nutrition in infant and toddler brain and behavioral development. <i>Nutritional Neuroscience</i> , 2008 , 11, 135-43	3.6	10
107	Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. <i>FASEB Journal</i> , 2006 , 20, 1635-40	0.9	10
106	Extracts of Fruits and Vegetables Activate the Antioxidant Response Element in IMR-32 Cells. <i>Journal of Nutrition</i> , 2015 , 145, 2006-11	4.1	9
105	Estimation of Dietary Intake 2012 , 1012-1026		9
104	Dose response effects of dermally applied diethanolamine on neurogenesis in fetal mouse hippocampus and potential exposure of humans. <i>Toxicological Sciences</i> , 2009 , 107, 220-6	4.4	9
103	Neurotransmitter precursors and brain function. <i>Neurosurgery</i> , 1982 , 10, 524-9	3.2	9
102	Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. <i>Journal of Dietary Supplements</i> , 2020 , 17, 733-752	2.3	9
101	Altered methylation of specific DNA loci in the liver of -null mice results in repression of and and is associated with development of preneoplastic foci. <i>FASEB Journal</i> , 2017 , 31, 2090-2103	0.9	8
100	Choline 2012 , 405-418		8
99	Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells. <i>Toxicological Sciences</i> , 2007 , 96, 321-6	4.4	8
98	Gene expression profiling in phosphatidylethanolamine N-methyltransferase knockout mice. <i>Molecular Brain Research</i> , 2005 , 134, 239-55		8
97	Betaine is accumulated via transient choline dehydrogenase activation during mouse oocyte meiotic maturation. <i>Journal of Biological Chemistry</i> , 2017 , 292, 13784-13794	5.4	7
96	Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements 2012 , 586-607		7
95	Thiamin 2012 , 261-279		7
94	Vitamin B6 2012 , 307-320		7
93	Betaine supplementation and blood lipids: fact or artifact?. <i>Nutrition Reviews</i> , 2006 , 64, 77-9	6.4	7
92	Sodium, Chloride, and Potassium 2012 , 475-492		6

91	Iodine and Iodine Deficiency Disorders 2012 , 554-567		6
90	Dietary Standards and Guidelines: Similarities and Differences Among Countries 2012 , 1110-1134		6
89	Reply to A Papas and E Vos. American Journal of Clinical Nutrition, 2001, 73, 1113-1114	7	6
88	Prenatal choline, cannabis, and infection, and their association with offspring development of attention and social problems through 4 years of age. <i>Psychological Medicine</i> , 2021 , 1-10	6.9	6
87	Low availability of choline disrupts development and function of the retina. <i>FASEB Journal</i> , 2019 , 33, 9194-9209	0.9	5
86	Lipids: Cellular Metabolism 2012 , 132-148		5
85	Nutrient Regulation of the Immune Response 2012 , 688-708		5
84	Riboflavin 2012 , 280-292		5
83	Pantothenic Acid 2012 , 375-390		5
82	A grand challenge for nutrigenomics. <i>Frontiers in Genetics</i> , 2010 , 1, 2	4.5	5
82 81	A grand challenge for nutrigenomics. Frontiers in Genetics, 2010, 1, 2 Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 209-19	4.5	5
	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary	4.5	5
81	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 209-19 The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The		5
81 80	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 209-19 The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. <i>Diabetes Care</i> , 2020 , 43, 2840-2846 Vitamin and Mineral Intake Is Inadequate for Most Americans: What Should We Advise Patients	14.6	5
81 80 79	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 209-19 The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. <i>Diabetes Care</i> , 2020 , 43, 2840-2846 Vitamin and Mineral Intake Is Inadequate for Most Americans: What Should We Advise Patients About Supplements?. <i>Journal of Family Practice</i> , 2016 , 65, S1-S8 Deletion of one allele of Mthfd1 (methylenetetrahydrofolate dehydrogenase 1) impairs learning in	14.6	555
81 80 79 78	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 209-19 The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. <i>Diabetes Care</i> , 2020 , 43, 2840-2846 Vitamin and Mineral Intake Is Inadequate for Most Americans: What Should We Advise Patients About Supplements?. <i>Journal of Family Practice</i> , 2016 , 65, S1-S8 Deletion of one allele of Mthfd1 (methylenetetrahydrofolate dehydrogenase 1) impairs learning in mice. <i>Behavioural Brain Research</i> , 2017 , 332, 71-74 Plasma 1-carbon metabolites and academic achievement in 15-yr-old adolescents. <i>FASEB Journal</i> ,	14.6 0.2 3.4	5554
81 80 79 78 77	Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 209-19 The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. <i>Diabetes Care</i> , 2020 , 43, 2840-2846 Vitamin and Mineral Intake Is Inadequate for Most Americans: What Should We Advise Patients About Supplements?. <i>Journal of Family Practice</i> , 2016 , 65, S1-S8 Deletion of one allele of Mthfd1 (methylenetetrahydrofolate dehydrogenase 1) impairs learning in mice. <i>Behavioural Brain Research</i> , 2017 , 332, 71-74 Plasma 1-carbon metabolites and academic achievement in 15-yr-old adolescents. <i>FASEB Journal</i> , 2016 , 30, 1683-8	14.6 0.2 3.4	5 5 5 4 4

(2012-2019)

73	Dietary choline and betaine intakes and risk of total and lethal prostate cancer in the Atherosclerosis Risk in Communities (ARIC) Study. <i>Cancer Causes and Control</i> , 2019 , 30, 343-354	2.8	3
72	Integrated profiling of metabolites and trace elements reveals a multifaceted malnutrition in pregnant women from a region with a high prevalence of congenital malformations. <i>Metabolomics</i> , 2012 , 8, 831-844	4.7	3
71	Lipids: Absorption and Transport 2012 , 118-131		3
70	Human Water and Electrolyte Balance 2012 , 493-505		3
69	Taste and Food Choices 2012 , 1027-1042		3
68	Nutritional Epigenetics 2012 , 14-26		3
67	Black American Maternal Prenatal Choline, Offspring Gestational Age at Birth, and Developmental Predisposition to Mental Illness. <i>Schizophrenia Bulletin</i> , 2021 , 47, 896-905	1.3	3
66	Betaine-homocysteine -methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia. <i>FASEB Journal</i> , 2019 , 33, 5942-5956	0.9	3
65	Dietary Fiber 2012 , 97-117		2
64	Obesity as a Health Risk 2012 , 709-720		2
63	Nutrition Monitoring in the United States 2012 , 1082-1109		2
62	Food Allergies and Intolerances 2012 , 1222-1235		2
61	Maternal Nutrient Metabolism and Requirements in Pregnancy and Lactation 2012, 608-623		2
60	Protein and Amino Acids 2012 , 69-82		2
59	Vitamin B12 2012 , 343-358		2
58	Response to: DEA in consumer products is safe. <i>FASEB Journal</i> , 2007 , 21, 296-297	0.9	2
57	Energy Metabolism in Fasting, Fed, Exercise, and Re-Feeding States58-68		2
56	Dietary Flavonoids 2012 , 419-433		1

55	Nutrition and Aging 2012 , 654-668		1
54	Atherosclerotic Cardiovascular Disease 2012 , 745-805		1
53	Epidemiologic Approaches to Evaluation of Nutrition and Health 2012, 1071-1081		1
52	Emergence of Diet-Related Chronic Diseases in Developing Countries 2012 , 1151-1164		1
51	Food Insecurity, Hunger, and Undernutrition 2012 , 1165-1181		1
50	Foodborne Infections and Food Safety 2012 , 1206-1221		1
49	Infant Nutrition 2012 , 624-636		1
48	Strategies for Changing Eating and Exercise Behavior to Promote Weight Loss and Maintenance 2012 , 1057-1070		1
47	Alcohol: Its Role in Nutrition and Health 2012 , 912-938		1
46	Unexpected depletion in plasma choline and phosphatidylcholine concentrations in a pregnant woman with bipolar affective disorder being treated with lithuim, haloperidol and benztropine: a case report. <i>Journal of Medical Case Reports</i> , 2008 , 2, 55	1.2	1
45	Menopause status explains large individual variation in cardiovascular disease risk marker response to different dietary choline intake levels. <i>FASEB Journal</i> , 2012 , 26, lb435	0.9	1
44	Choline 2020 , 305-318		1
43	Polymorphisms in SLC44A1 are associated with cognitive improvement in children diagnosed with fetal alcohol spectrum disorder: an exploratory study of oral choline supplementation. <i>American Journal of Clinical Nutrition</i> , 2021 , 114, 617-627	7	1
42	Targeting Treatments to Health Disparities. Schizophrenia Bulletin, 2021, 47, 886-887	1.3	1
41	Determination of Cooking Yields and Nutrient Retention Factors of Choline in Meat Products. <i>FASEB Journal</i> , 2007 , 21, A314	0.9	0
40	Choline 2010 , 136-143		O
39	Metabolomics 2012 , 38-57		
38	Systems Biology Approaches to Nutrition 2012 , 1-13		

(2006-2012)

37	Sports Nutrition 2012 , 669-687
36	Insulin Resistance and the Metabolic Syndrome 2012 , 732-744
35	Eye Disease 2012 , 939-981
34	Specialized Nutrition Support 2012 , 982-999
33	Body Composition Evaluation 2012 , 1000-1011
32	The Role of United Nations Agencies in Establishing International Dietary Standards 2012 , 1135-1150
31	Public Nutrition in Humanitarian Crises 2012 , 1182-1205
30	Food Biofortification: Breeding and Biotechnology Approaches to Improve Nutrients in Vegetables and Oil Quality in Soybean 2012 , 1236-1254
29	Bioactive Components in Foods and Supplements for Health Promotion 2012 , 1255-1267
28	Energy Intake, Obesity, and Eating Behavior 2012 , 1043-1056
27	Carotenoids 2012 , 185-198
26	Genetic Variation and Nutrient Metabolism 2012 , 27-37
25	Nutrition and Gastrointestinal Illness 2012, 857-873
24	Kidney Disease 2012 , 874-888
23	Liver Disease 2012 , 889-911
22	Dietary Choline, Betaine, Methionine, and Epigenetic Mechanisms Influencing Brain Development 2011 , 225-240
21	Estrogen Regulation of the human PEMT (phosphatidylethanolamine N-methyltransferase) gene. FASEB Journal, 2006 , 20, A612
20	Influence of pregnancy on the fatty acid composition of plasma phosphatidylcholine and on plasma choline concentrations in humans <i>FASEB Journal</i> , 2006 , 20, A614

19	Phosphatidylcholine containing docosahexaenoic acid (DHA) as a marker for in vivo phospatidylethanolamine methyltransferase: implications for brain development. <i>FASEB Journal</i> , 2007 , 21, A1120	0.9
18	Effects of a high daily dose of soy isoflavones on DNA damage, apoptosis and estrogenic outcomes in healthy, post-menopausal women - a Phase I clinical trial. <i>FASEB Journal</i> , 2007 , 21, A370	0.9
17	Estrogen induces the PEMT (phosphatidylethanolamine N-methyltransferase) gene in human and murine hepatocytes. <i>FASEB Journal</i> , 2007 , 21, A61	0.9
16	Choline deficiency influences the interaction between REST, chromatin methylation and altered fetal neurogenesis. <i>FASEB Journal</i> , 2008 , 22, 689.5	0.9
15	Metabolomics analysis of plasma from humans depleted of choline. FASEB Journal, 2008, 22, 688.8	0.9
14	Choline deficiency alters angiogenesis in the fetal brain. FASEB Journal, 2008, 22, 1122.19	0.9
13	Single nucleotide polymorphisms in the phosphatidylethanolamine N-methyltransferase gene may influence choline requirement. <i>FASEB Journal</i> , 2010 , 24, 552.7	0.9
12	Oral betaine supplementation restores ATP concentrations in choline dehydrogenase knockout mouse spermatozoa. <i>FASEB Journal</i> , 2010 , 24, 228.2	0.9
11	Reproducibility of 24 hour energy expenditure measured by whole-room indirect calorimetry in lean and obese males. <i>FASEB Journal</i> , 2010 , 24, 554.3	0.9
10	Online nutrition education for practicing physicians (NEPP). FASEB Journal, 2010 , 24, 211.2	0.9
9	Dietary Choline for Brain Development 2011 , 2089-2104	
8	Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. <i>FASEB Journal</i> , 2011 , 25, lb182	0.9
7	Nutrition Education for Practicing Physicians (NEPP). FASEB Journal, 2011, 25, 989.29	0.9
6	Choline dehydrogenase polymorphism rs12676 is a functional variation associated with changes in human sperm cell function. <i>FASEB Journal</i> , 2012 , 26, 126.7	0.9
5	Genotype-based hierarchical clustering reveals a panel of polymorphisms in one carbon metabolism that are associated with obesity. <i>FASEB Journal</i> , 2012 , 26, 819.18	0.9
4	Nutrition Education for Practicing Physicians. FASEB Journal, 2012, 26, lb408	0.9
3	Effect of Chdh deletion on mouse fetal neurogenesis and apoptosis. FASEB Journal, 2013, 27, 1058.7	0.9
2	Perturbed 1-carbon metabolism alters bile acid pools and insulin signaling. FASEB Journal, 2013, 27, 10	77a.5j

LIST OF PUBLICATIONS

The Nutrigenetics of Choline **2020**, 303-308