List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6836926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma electrolytic oxidation of magnesium by sawtooth pulse current. Surface and Coatings Technology, 2022, 429, 127938.	2.2	12
2	Analysis of electrical response, gas evolution and coating morphology during transition to soft sparking PEO of Al. Surface and Coatings Technology, 2022, 442, 128142.	2.2	13
3	An investigation of precipitation strengthened Inconel 718 superalloy after triode plasma nitriding. Surface and Coatings Technology, 2022, 442, 128401.	2.2	8
4	Surface characteristics underpinning fretting wear performance of heavily loaded duplex chameleon/PEO coatings on Al. Tribology International, 2021, 154, 106723.	3.0	14
5	Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene. Carbon, 2021, 171, 294-305.	5.4	27
6	Evaluation of the sliding wear and corrosion performance of triode-plasma nitrided Fe-17Cr-20Mn-0.5N high-manganese and Fe-19Cr-35Ni-1.2Si high-nickel austenitic stainless steels. Surface and Coatings Technology, 2021, 409, 126890.	2.2	23
7	Toward rational design of ceramic coatings generated on valve metals by plasma electrolytic oxidation: The role of cathodic polarisation. Ceramics International, 2021, 47, 34137-34158.	2.3	30
8	Dry sliding wear behaviour of additive manufactured CrC-rich WC-Co cemented carbides. Wear, 2021, 486-487, 204127.	1.5	11
9	Flexible nanoporous activated carbon for adsorption of organics from industrial effluents. Nanoscale, 2021, 13, 15311-15323.	2.8	26
10	Adhesive bond strength of PEO coated AA6060-T6. Surface and Coatings Technology, 2021, 428, 127898.	2.2	12
11	On the Nitrogen-Induced Lattice Expansion of a Non-stainless Austenitic Steel, Invar 36®, Under Triode Plasma Nitriding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 436-447.	1.1	17
12	Relaxation Kinetics of Plasma Electrolytic Oxidation Coated Al Electrode: Insight into the Role of Negative Current. Journal of Physical Chemistry C, 2020, 124, 23784-23797.	1.5	13
13	Investigation of the nanostructure of as-deposited and post-coat annealed CrCuAgN PVD nanocomposite coatings. Materials Chemistry and Physics, 2020, 255, 123499.	2.0	1
14	Nanostructural Characterisation and Optical Properties of Sputter-Deposited Thick Indium Tin Oxide (ITO) Coatings. Coatings, 2020, 10, 1127.	1.2	7
15	Evaluation of wear mechanisms in additive manufactured carbide-rich tool steels. Wear, 2020, 462-463, 203449.	1.5	7
16	On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite. Scripta Materialia, 2020, 185, 146-151.	2.6	16
17	Smart Functionalization of Ceramic-Coated AZ31 Magnesium Alloy. ACS Applied Materials & Interfaces, 2020, 12, 30833-30846.	4.0	38
18	Surface Engineering of Ceramic Nanomaterials for Separation of Oil/Water Mixtures. Frontiers in Chemistry, 2020, 8, 578.	1.8	14

#	Article	IF	CITATIONS
19	AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 2020, 399, 126116.	2.2	29
20	Plasma additive layer manufacture smoothing (PALMS) technology – An industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel. Additive Manufacturing, 2020, 34, 101204.	1.7	5
21	Industrial Gear Oils: Influence of Bulk Oil Temperature and Contact Pressure on Tribological Performance and Subsurface Changes. Tribology Letters, 2020, 68, 1.	1.2	7
22	Phase Change with Density Variation and Cylindrical Symmetry: Application to Selective Laser Melting. Journal of Manufacturing and Materials Processing, 2019, 3, 62.	1.0	1
23	Renewable Adsorbent for the Separation of Surfactant-Stabilized Oil in Water Emulsions Based on Nanostructured Sawdust. ACS Sustainable Chemistry and Engineering, 2019, 7, 18935-18942.	3.2	28
24	Role of cathodic current in plasma electrolytic oxidation of Al: A quantitative approach to in-situ evaluation of cathodically induced effects. Electrochimica Acta, 2019, 317, 221-231.	2.6	38
25	Charge transfer mechanisms underlying Contact Glow Discharge Electrolysis. Electrochimica Acta, 2019, 312, 441-456.	2.6	41
26	Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy. Electrochimica Acta, 2019, 299, 772-788.	2.6	45
27	The influence of stacking fault energy on plasticity mechanisms in triode-plasma nitrided austenitic stainless steels: Implications for the structure and stability of nitrogen-expanded austenite. Acta Materialia, 2019, 164, 60-75.	3.8	38
28	Plasma electrolytic oxidation coatings on cp-Mg with cerium nitrate and benzotriazole immersion post-treatments. Surface and Coatings Technology, 2018, 344, 330-341.	2.2	40
29	Industrial Gear Oils: Tribological Performance and Subsurface Changes. Tribology Letters, 2018, 66, 65.	1.2	8
30	Improving the surface characteristics of Ti-6Al-4V and Timetal 834 using PIRAC nitriding treatments. Surface and Coatings Technology, 2018, 339, 208-223.	2.2	23
31	Novel combustion synthesis of carbon foam‑aluminum fluoride nanocomposite materials. Materials and Design, 2018, 144, 222-228.	3.3	14
32	Deposition of a stable and high concentration of carboxylic acid functional groups onto a silicon surface via a tailored remote atmospheric pressure plasma process. Surface and Coatings Technology, 2018, 336, 67-71.	2.2	17
33	The role of cathodic current in plasma electrolytic oxidation of aluminium: current density â€~scanning waves' on complex-shape substrates. Journal Physics D: Applied Physics, 2018, 51, 405303.	1.3	14
34	Fretting wear behavior of duplex PEO/chameleon coating on Al alloy. Surface and Coatings Technology, 2018, 352, 238-246.	2.2	36
35	Immobilization of carboxylic acid groups on polymeric substrates by plasma-enhanced chemical vapor or atmospheric pressure plasma deposition of acetic acid. Thin Solid Films, 2018, 666, 54-60.	0.8	7
36	Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Progress in Materials Science, 2017, 89, 31-91.	16.0	467

#	Article	IF	CITATIONS
37	Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surface and Coatings Technology, 2017, 310, 59-69.	2.2	32
38	The Role of Cathodic Current in Plasma Electrolytic Oxidation of Aluminum: Phenomenological Concepts of the "Soft Sparking―Mode. Langmuir, 2017, 33, 11059-11069.	1.6	85
39	CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure. Applied Surface Science, 2017, 392, 732-746.	3.1	15
40	Crystal size induced reduction in thermal hysteresis of Ni-Ti-Nb shape memory thin films. Applied Physics Letters, 2016, 108, .	1.5	5
41	Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy. Corrosion Science, 2016, 111, 753-769.	3.0	172
42	Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions. RSC Advances, 2016, 6, 12688-12698.	1.7	32
43	In situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing coatings on Ti. Surface and Coatings Technology, 2016, 301, 54-62.	2.2	83
44	Characterisation and Electrochemical Evaluation of Plasma Electrolytic Oxidation Coatings on Magnesium with Plasma Enhanced Chemical Vapour Deposition Post-Treatments. Plasma Processes and Polymers, 2016, 13, 266-278.	1.6	15
45	Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings. Materials Science and Engineering C, 2015, 49, 190-200.	3.8	28
46	Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium. Surface and Coatings Technology, 2015, 269, 170-182.	2.2	64
47	Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling. Surface and Coatings Technology, 2015, 269, 2-22.	2.2	146
48	Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 269, 258-265.	2.2	82
49	Tribological behaviour of thermochemically surface engineered steels. , 2015, , 241-266.		9
50	Fabrication of Nb2O5/SiO2 mixed oxides by reactive magnetron co-sputtering. Thin Solid Films, 2015, 589, 95-104.	0.8	16
51	Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process. Surface and Coatings Technology, 2015, 284, 427-437.	2.2	45
52	Corrosion behaviour of triode plasma diffusion treated and PVD TiN-coated Ti–6Al–4V in acidified aqueous chloride environments. Surface and Coatings Technology, 2015, 280, 185-193.	2.2	15
53	The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings. Surface and Coatings Technology, 2015, 284, 101-111.	2.2	16
54	Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures. Thin Solid Films, 2015, 591, 149-155.	0.8	6

#	Article	IF	CITATIONS
55	Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings. Applied Surface Science, 2014, 316, 558-567.	3.1	93
56	Laser Texturing of Plasma Electrolytically Oxidized Aluminum 6061 Surfaces for Improved Hydrophobicity. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	23
57	Influence of current density and electrolyte concentration on DC PEO titania coatings. Surface Engineering, 2014, 30, 102-108.	1.1	35
58	High-rate reactive magnetron sputtering of zirconia films for laser optics applications. Applied Physics A: Materials Science and Processing, 2014, 116, 1229-1240.	1.1	16
59	Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3104-3109.	2.7	56
60	Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering. Vacuum, 2014, 107, 159-163.	1.6	11
61	Enhanced surface performance of Ti-6Al-4V alloy using a novel duplex process combining PVD-Al coating and triode plasma oxidation. Surface and Coatings Technology, 2014, 257, 154-164.	2.2	15
62	Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium. Electrochimica Acta, 2014, 149, 218-230.	2.6	83
63	Evaluating the effects of PIRAC nitrogen-diffusion treatments on the mechanical performance of Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 300-311.	2.6	24
64	Evaluation of Residual Stress Development at the Interface of Plasma Electrolytically Oxidized and Cold-Worked Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4461-4465.	1.1	9
65	Substrate and bonding layer effects on performance of DLC and TiN biomedical coatings in Hank's solution under cyclic impact–sliding loads. Surface and Coatings Technology, 2013, 237, 219-229.	2.2	31
66	DC plasma electrolytic oxidation of biodegradable cp-Mg: In-vitro corrosion studies. Surface and Coatings Technology, 2013, 234, 132-142.	2.2	43
67	Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surface and Coatings Technology, 2013, 215, 170-177.	2.2	122
68	System linearity quantification for in-situ impedance spectroscopy of plasma electrolytic oxidation. Electrochemistry Communications, 2013, 27, 137-140.	2.3	18
69	Corrosion behaviour and galvanic coupling with steel of Al-based coating alternatives to electroplated cadmium. Materials Chemistry and Physics, 2013, 141, 128-137.	2.0	11
70	<i>In vitro</i> biological response of plasma electrolytically oxidized and plasmaâ€sprayed hydroxyapatite coatings on Ti–6Al–4V alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 939-949.	1.6	53
71	Laser treatment of carbon film coated steel surface. Surface Engineering, 2012, 28, 57-67.	1.1	2
72	Surface modification of Ti–6Al–4V alloys using triode plasma oxidation treatments. Surface and Coatings Technology, 2012, 206, 4553-4561.	2.2	23

#	Article	IF	CITATIONS
73	Laser surface modification treatment of aluminum bronze with B4C. Applied Surface Science, 2012, 263, 804-809.	3.1	34
74	Triode plasma diffusion treatment of titanium alloys. Surface and Coatings Technology, 2012, 212, 20-31.	2.2	20
75	Impact wear resistance of plasma diffusion treated and duplex treated/PVD-coated Ti–6Al–4V alloy. Surface and Coatings Technology, 2012, 206, 2645-2654.	2.2	33
76	An investigation into the tribological performance of Physical Vapour Deposition (PVD) coatings on high thermal conductivity Cu-alloy substrates and the effect of an intermediate electroless Ni–P layer prior to PVD treatment. Thin Solid Films, 2012, 520, 2922-2931.	0.8	19
77	Micro-abrasion wear testing of triode plasma diffusion and duplex treated Ti–6Al–4V alloy. Wear, 2012, 274-275, 377-387.	1.5	22
78	Laser Remelting of Zirconia Surface: Investigation into Stress Field and Microstructures. Materials and Manufacturing Processes, 2011, 26, 1277-1287.	2.7	14
79	The UK surface engineering market. Transactions of the Institute of Metal Finishing, 2011, 89, 69-70.	0.6	2
80	Tribological properties of duplex plasma oxidised, nitrided and PVD coated Ti–6Al–4V. Surface and Coatings Technology, 2011, 206, 395-404.	2.2	38
81	An investigation into the effect of Triode Plasma Oxidation (TPO) on the tribological properties of Ti6Al4V. Surface and Coatings Technology, 2011, 206, 1955-1962.	2.2	17
82	A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges. Thin Solid Films, 2011, 520, 1564-1570.	0.8	17
83	Plasma-based processes and thin film equipment for nano-scale device fabrication. Journal of Materials Science, 2011, 46, 1-37.	1.7	15
84	Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti–6Al–4V alloy. International Journal of Fatigue, 2011, 33, 1313-1323.	2.8	38
85	Microstructure and Thermal Stress Distributions in Laser Carbonitriding Treatment of Ti–6Al–4V Alloy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133, .	1.3	11
86	Influence of Surface Hardening Depth on the Cavitation Erosion Resistance of a Low Alloy Steel. Journal of ASTM International, 2011, 8, 1-12.	0.2	0
87	Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal Physics D: Applied Physics, 2010, 43, 105203.	1.3	475
88	Substitution of hexavalent chromate conversion treatment with a plasma electrolytic oxidation process to improve the corrosion properties of ion vapour deposited AlMg coatings. Surface and Coatings Technology, 2010, 205, 1750-1756.	2.2	17
89	Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments. Journal of Power Sources, 2010, 195, 3814-3821.	4.0	127
90	Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel. Journal of Materials Processing Technology, 2010, 210, 54-63.	3.1	40

#	Article	IF	CITATIONS
91	A study of the nanostructure and hardness of electron beam evaporated TiAlBN Coatings. Thin Solid Films, 2010, 518, 4273-4280.	0.8	15
92	Nano-structured TiO2 films by plasma electrolytic oxidation combined with chemical and thermal post-treatments of titanium, for dye-sensitised solar cell applications. Thin Solid Films, 2010, 519, 1723-1728.	0.8	29
93	PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes. Surface and Coatings Technology, 2010, 204, 2316-2322.	2.2	145
94	Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration. Surface and Coatings Technology, 2010, 205, 1679-1688.	2.2	156
95	Voltastatic studies of magnesium anodising in alkaline solutions. Surface and Coatings Technology, 2010, 205, 1527-1531.	2.2	22
96	A study of the reciprocating-sliding wear performance of plasma surface treated titanium alloy. Wear, 2010, 269, 60-70.	1.5	69
97	The nanostructure, wear and corrosion performance of arc-evaporated CrBxNy nanocomposite coatings. Surface and Coatings Technology, 2009, 204, 246-255.	2.2	33
98	Positive Ion Mass Spectrometry during an Atmospheric Pressure Plasma Treatment of Polymers. Plasma Processes and Polymers, 2009, 6, 521-529.	1.6	14
99	Mutifunctional arc ion plated TiO2 photocatalytic coatings with improved wear and corrosion protection. Surface and Coatings Technology, 2009, 203, 1689-1693.	2.2	16
100	Small signal frequency response studies for plasma electrolytic oxidation. Surface and Coatings Technology, 2009, 203, 2896-2904.	2.2	30
101	Growth behavior and microstructure of arc ion plated titanium dioxide. Surface and Coatings Technology, 2009, 204, 915-922.	2.2	21
102	Evaluation of abradable seal coating mechanical properties. Wear, 2009, 267, 1501-1510.	1.5	49
103	The morphology and structure of PVD ZrN–Cu thin films. Journal Physics D: Applied Physics, 2009, 42, 085308.	1.3	15
104	Material transfer phenomena and failure mechanisms of a nanostructured Cr–Al–N coating in laboratory wear tests and an industrial punch tool application. Surface and Coatings Technology, 2008, 203, 816-821.	2.2	47
105	Composition and structure-property relationships of chromium-diboride/molybdenum-disulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering. Applied Physics A: Materials Science and Processing, 2008, 91, 77-86.	1.1	24
106	Characterization studies of pulse magnetron sputtered hard ceramic titanium diboride coatings alloyed with silicon. Acta Materialia, 2008, 56, 4172-4182.	3.8	17
107	Tribological behaviour of pulsed magnetron sputtered CrB2 coatings examined by reciprocating sliding wear testing against aluminium alloy and steel. Surface and Coatings Technology, 2008, 202, 1470-1478.	2.2	30
108	Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge. Surface and Coatings Technology, 2008, 203, 822-825.	2.2	37

#	Article	IF	CITATIONS
109	Pulsed-bias magnetron sputtering of non-conductive crystalline chromia films at low substrate temperature. Journal Physics D: Applied Physics, 2008, 41, 035309.	1.3	17
110	Structure and mechanical properties of nitrogen-containing Zr–Cu based thin films deposited by pulsed magnetron sputtering. Journal Physics D: Applied Physics, 2008, 41, 155301.	1.3	13
111	Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation. Philosophical Magazine, 2008, 88, 795-807.	0.7	59
112	Tribological coatings: contact mechanisms and selection. Journal Physics D: Applied Physics, 2007, 40, 5463-5475.	1.3	123
113	Hard and superhard TiAlBN coatings deposited by twin electron-beam evaporation. Surface and Coatings Technology, 2007, 201, 6078-6083.	2.2	36
114	Frequency response studies for the plasma electrolytic oxidation process. Surface and Coatings Technology, 2007, 201, 8661-8670.	2.2	61
115	Investigation of abradable seal coating performance using scratch testing. Surface and Coatings Technology, 2007, 202, 1214-1220.	2.2	57
116	Structure and electronic properties calculation of ultrathin α-Al2O3 films on (0001) α-Cr2O3 templates. Surface Science, 2007, 601, 5050-5056.	0.8	10
117	A perspective on the optimisation of hard carbon and related coatings for engineering applications. Thin Solid Films, 2007, 515, 6619-6653.	0.8	293
118	Impedance spectroscopy characterisation of PEO process and coatings on aluminium. Thin Solid Films, 2007, 516, 428-432.	0.8	50
119	A New Approach to the Deposition of Elemental Boron and Boron-Based Coatings by Pulsed Magnetron Sputtering of Loosely Packed Boron Powder Targets. Plasma Processes and Polymers, 2007, 4, S160-S165.	1.6	9
120	The Structure and Mechanical Properties of Ti-Si-B Coatings Deposited by DC and Pulsed-DC Unbalanced Magnetron Sputtering. Plasma Processes and Polymers, 2007, 4, S687-S692.	1.6	23
121	The influence of coatings on the oil-out performance of rolling bearings. Surface and Coatings Technology, 2007, 202, 1073-1077.	2.2	17
122	Molecular dynamics simulation of the (0001) α-Al2O3 and α-Cr2O3 surfaces. Surface Science, 2007, 601, 1358-1364.	0.8	15
123	Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films, 2007, 516, 460-464.	0.8	79
124	The effect of combined shot-peening and PEO treatment on the corrosion performance of 2024 Al alloy. Thin Solid Films, 2007, 516, 417-421.	0.8	46
125	A TEM study of the structure of magnetron sputtered chromium diboride coatings. Journal of Physics: Conference Series, 2006, 26, 355-358.	0.3	12
126	Optimization of Nanostructured Tribological Coatings. Nanostructure Science and Technology, 2006, , 511-538.	0.1	17

ALLAN MATTHEWS

#	Article	IF	CITATIONS
127	Nanostructural studies of PVD TiAlB coatings. Surface and Interface Analysis, 2006, 38, 731-735.	0.8	9
128	A simple transferable interatomic potential model for binary oxides applied to bulk and the (0001) surface. Journal of Crystal Growth, 2006, 290, 235-240.	0.7	33
129	Mechanical and tribological properties of CrTiCu(B,N) glassy-metal coatings deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2006, 200, 4601-4611.	2.2	10
130	Deposition of Ni–Al–Y alloy films using a hybrid arc ion plating and magnetron sputtering system. Surface and Coatings Technology, 2006, 200, 5877-5883.	2.2	19
131	Studies on a combined reactive plasma sprayed/arc deposited duplex coating for titanium alloys. Surface and Coatings Technology, 2006, 201, 1200-1206.	2.2	21
132	Thermal cyclic performance of NiAl/alumina-stabilized zirconia thermal barrier coatings deposited using a hybrid arc and magnetron sputtering system. Surface and Coatings Technology, 2006, 201, 3901-3905.	2.2	5
133	The effect of pulsed magnetron sputtering on the structure and mechanical properties of CrB2 coatings. Surface and Coatings Technology, 2006, 201, 3970-3976.	2.2	41
134	Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3. Surface and Coatings Technology, 2006, 201, 4205-4208.	2.2	107
135	Calculation of native defect energies in α-A12O3 and α-Cr2O3 using a modified Matsui potential. Surface and Coatings Technology, 2006, 201, 4201-4204.	2.2	11
136	Correlation of elastic modulus, hardness and density for sputtered TiAlBN thin films. Thin Solid Films, 2006, 514, 81-86.	0.8	23
137	Microstructure of direct current and pulse magnetron sputtered Cr–B coatings. Thin Solid Films, 2006, 515, 1511-1516.	0.8	43
138	Effect of combined shot-peening and PEO treatment on fatigue life of 2024ÂAl alloy. Thin Solid Films, 2006, 515, 1187-1191.	0.8	85
139	Coatings and Surface Engineering: Physical Vapor Deposition. , 2006, , 396-413.		2
140	A model for galvanostatic anodising of Al in alkaline solutions. Electrochimica Acta, 2005, 50, 5458-5464.	2.6	32
141	Characterisation and tribological evaluation of nitrogen-containing molybdenum–copper PVD metallic nanocomposite films. Surface and Coatings Technology, 2005, 190, 345-356.	2.2	39
142	Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology, 2005, 199, 150-157.	2.2	244
143	Investigation of the nanostructure and post-coat thermal treatment of wear-resistant PVD CrTiCuBN coatings. Surface and Coatings Technology, 2005, 200, 310-314.	2.2	10

 Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings. Surface and Coatings Technology, 2005, 200, 208-212.

#	Article	IF	CITATIONS
145	The structure and properties of chromium diboride coatings deposited by pulsed magnetron sputtering of powder targets. Surface and Coatings Technology, 2005, 200, 1366-1371.	2.2	39
146	Plasma nitriding of Ti6Al4V alloy and AISI M2 steel substrates using D.C. glow discharges under a triode configuration. Surface and Coatings Technology, 2005, 200, 1954-1961.	2.2	41
147	Deposition of multicomponent chromium boride based coatings by pulsed magnetron sputtering of powder targets. Surface and Coatings Technology, 2005, 200, 1616-1623.	2.2	31
148	Deposition of yttria-stablized zirconia films using arc ion plating. Surface and Coatings Technology, 2005, 200, 1401-1406.	2.2	15
149	Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface and Coatings Technology, 2005, 200, 1580-1586.	2.2	115
150	Editorial: Welcoming 3rd Editor. Surface and Coatings Technology, 2005, 197, vii.	2.2	0
151	Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 423-433.	0.9	38
152	Fatigue properties of Keronite® coatings on a magnesium alloy. Surface and Coatings Technology, 2004, 182, 78-84.	2.2	171
153	Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings. Surface and Coatings Technology, 2004, 177-178, 489-496.	2.2	119
154	Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta, 2004, 49, 2085-2095.	2.6	363
155	Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface and Coatings Technology, 2004, 177-178, 779-783.	2.2	117
156	Comparison of a simulated â€~in-service' rig test with a standardised laboratory abrasion test. Surface and Coatings Technology, 2004, 177-178, 603-610.	2.2	3
157	Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surface and Coatings Technology, 2004, 177-178, 317-324.	2.2	386
158	Determination of the electron temperature profile above the evaporative source in an ion plating discharge by spatially resolved optical emission spectroscopy. Thin Solid Films, 2003, 434, 157-161.	0.8	1
159	Gas scattering effects and microstructural evaluation of electron beam evaporated titanium coatings in neon and argon at different gas pressures. Vacuum, 2003, 72, 225-232.	1.6	5
160	Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti–6Al–4V artificial hip joints. Surface and Coatings Technology, 2003, 163-164, 597-604.	2.2	101
161	Impact testing of duplex and non-duplex (Ti,Al)N and Cr–N PVD coatings. Surface and Coatings Technology, 2003, 163-164, 353-361.	2.2	74
162	An approach to elucidate the different response of PVD coatings in different tribological tests. Surface and Coatings Technology, 2003, 174-175, 891-898.	2.2	63

#	Article	IF	CITATIONS
163	The nanostructure and mechanical properties of PVD CrCu (N) coatings. Surface and Coatings Technology, 2003, 162, 222-227.	2.2	49
164	Discharge characterization in plasma electrolytic oxidation of aluminium. Journal Physics D: Applied Physics, 2003, 36, 2110-2120.	1.3	404
165	An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling. Corrosion Science, 2003, 45, 1243-1256.	3.0	323
166	An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II Corrosion Science, 2003, 45, 1257-1273.	3.0	446
167	Investigation of interactions between inert gases and nitrogen in direct current triode discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1683-1687.	0.9	3
168	Plasma-based physical vapor deposition surface engineering processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, S224-S231.	0.9	34
169	X-ray diffraction analyses of titanium coatings produced by electron beam evaporation in neon and argon inert gases. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1702-1707.	0.9	5
170	Process Developments Towards Producing Well Adherent Duplex PAPVD Coatings. Surface Engineering, 2003, 19, 37-44.	1.1	12
171	Developments in Vapour Deposited Ceramic Coatings for Tribological Applications. Key Engineering Materials, 2002, 206-213, 459-466.	0.4	22
172	Structure and corrosion properties of PVD Cr–N coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 772-780.	0.9	44
173	Properties and Performance Crtialn of Multilayer Hard Coatings Deposited Using Magnetron Sputter Ion Plating. Surface Engineering, 2002, 18, 391-396.	1.1	35
174	Evidence of ionized metal clusters in ion plating discharges. Applied Physics Letters, 2002, 81, 1405-1407.	1.5	0
175	Characterisation of duplex and non-duplex (Ti,Al)N and Cr–N PVD coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 336, 39-51.	2.6	28
176	Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Applied Surface Science, 2002, 200, 172-184.	3.1	238
177	Micro-scale abrasive wear testing of duplex and non-duplex (single-layered) PVD (Ti,Al)N, TiN and Cr–N coatings. Tribology International, 2002, 35, 363-372.	3.0	69
178	Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology, 2002, 149, 245-251.	2.2	387
179	Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings. Surface and Coatings Technology, 2002, 151-152, 338-343.	2.2	80
180	A comparative study of the cyclic thermal oxidation of PVD nickel aluminide coatings. Surface and Coatings Technology, 2002, 155, 67-79.	2.2	45

#	Article	IF	CITATIONS
181	Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division). Vacuum, 2002, 65, 237-238.	1.6	14
182	Electron spectroscopic studies of nanocomposite PVD TiAlBN coatings. Vacuum, 2002, 67, 471-476.	1.6	23
183	Plasma immersion ion implantation as a technique in duplex and hybrid processing. Vacuum, 2002, 68, 57-64.	1.6	5
184	Tribological evaluation of AISI 304 stainless steel duplex treated by plasma electrolytic nitrocarburising and diamond-like carbon coating. Wear, 2002, 253, 986-993.	1.5	57
185	Ion plating discharges: evidence of cluster formation during metal evaporation. Thin Solid Films, 2002, 414, 7-12.	0.8	5
186	EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science, 2001, 43, 1953-1961.	3.0	302
187	A study of neon–nitrogen interactions in d.c. glow discharges by optical emission spectroscopy. Thin Solid Films, 2001, 398-399, 507-512.	0.8	12
188	Cyclic oxidation resistance of Ni–Al alloy coatings deposited on steel by a cathodic arc plasma process. Surface and Coatings Technology, 2001, 135, 158-165.	2.2	42
189	Micro-abrasive wear of PVD duplex and single-layered coatings. Surface and Coatings Technology, 2001, 142-144, 1137-1143.	2.2	40
190	Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings. Surface and Coatings Technology, 2001, 141, 164-173.	2.2	205
191	Micro-abrasion wear testing of PVD TiN coatings on untreated and plasma nitrided AISI H13 steel. Wear, 2001, 249, 971-979.	1.5	63
192	Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. Journal of Biomedical Materials Research Part B, 2001, 57, 612-618.	3.0	84
193	Modelling the Deformation Behaviour of Multilayer Coatings. Tribology Letters, 2001, 11, 103-106.	1.2	33
194	Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels. Surface and Coatings Technology, 2001, 139, 135-142.	2.2	123
195	Duplex surface treatments combining plasma electrolytic nitrocarburising and plasma-immersion ion-assisted deposition. Surface and Coatings Technology, 2001, 142-144, 1129-1136.	2.2	72
196	Investigation into nitrogen–inert gas interactions in d.c. diode glow discharges. Surface and Coatings Technology, 2001, 142-144, 540-545.	2.2	8
197	Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings Technology, 2000, 130, 195-206.	2.2	589
198	Deposition of duplex Al2O3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique. Surface and Coatings Technology, 2000, 131, 506-513.	2.2	66

#	Article	IF	CITATIONS
199	Low temperature deposition of Cr(N)/TiO2 coatings using a duplex process of unbalanced magnetron sputtering and micro-arc oxidation. Surface and Coatings Technology, 2000, 133-134, 331-337.	2.2	39
200	Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology, 2000, 125, 407-414.	2.2	370
201	Tribology of thin coatings. Ceramics International, 2000, 26, 787-795.	2.3	225
202	On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000, 246, 1-11.	1.5	2,330
203	Recent developments in plasma assisted physical vapour deposition. Journal Physics D: Applied Physics, 2000, 33, R173-R186.	1.3	96
204	Tribological Properties of Metallic and Ceramic Coatings. Mechanics & Materials Science, 2000, , .	0.1	5
205	The influence of neon in the deposition of titanium nitride by plasma-assisted physical vapour deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 262, 227-231.	2.6	5
206	Wear behaviour of carbon-containing tungsten coatings prepared by reactive magnetron sputtering. Surface and Coatings Technology, 1999, 112, 85-90.	2.2	36
207	Structure, mechanical and tribological properties of sputtered TiAlBN thin films. Surface and Coatings Technology, 1999, 113, 126-133.	2.2	69
208	A comparative study of the influence of plasma treatments, PVD coatings and ion implantation on the tribological performance of Ti–6Al–4V. Surface and Coatings Technology, 1999, 114, 70-80.	2.2	104
209	Life analysis of coated tools using statistical methods. Surface and Coatings Technology, 1999, 116-119, 654-661.	2.2	3
210	Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface and Coatings Technology, 1999, 116-119, 1055-1060.	2.2	258
211	Experimental and theoretical studies of the low-temperature growth of chromia and alumina. Surface and Coatings Technology, 1999, 116-119, 699-704.	2.2	45
212	Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering. Surface and Coatings Technology, 1999, 115, 222-229.	2.2	177
213	The effect of boron additions on the tribological behaviour of TiN coatings produced by electron-beam evaporative PVD. Surface and Coatings Technology, 1999, 116-119, 648-653.	2.2	37
214	Vacuum arc deposition of conductive wear resistant coatings on polymer substrates. Surface and Coatings Technology, 1999, 120-121, 373-377.	2.2	13
215	Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999, 122, 73-93.	2.2	2,548
216	Structure, hardness and mechanical properties of magnetron-sputtered titanium–aluminium boride films. Surface and Coatings Technology, 1999, 120-121, 412-417.	2.2	84

#	Article	IF	CITATIONS
217	Deposition and characterisation of TiAlBN coatings produced by direct electron-beam evaporation of Ti and Ti-Al-B-N material from a twin crucible source. Thin Solid Films, 1999, 343-344, 242-245.	0.8	31
218	The Effect of Substrate Pretreatment on PVD TiN Hard Coating Performance. Materials and Manufacturing Processes, 1999, 14, 257-269.	2.7	0
219	Analysis of a Segmented Die Design Approach to Improving the Performance of Coated Metal Forming Tools. Materials and Manufacturing Processes, 1999, 14, 271-284.	2.7	0
220	The Effect of Hard Coating Properties on Substrate Stresses Under Tribological Loads. Materials and Manufacturing Processes, 1999, 14, 243-255.	2.7	4
221	Hard coatings on light-metal components under mechanical surface loading. Materialwissenschaft Und Werkstofftechnik, 1998, 29, 141-152.	0.5	9
222	Deposition and characterisation of carbon-containing tungsten coatings prepared by reactive magnetron sputtering. Vacuum, 1998, 49, 265-272.	1.6	22
223	Coatings tribology—contact mechanisms and surface design. Tribology International, 1998, 31, 107-120.	3.0	348
224	Reactive ionized magnetron sputtering of crystalline alumina coatings. Surface and Coatings Technology, 1998, 98, 1473-1476.	2.2	45
225	Performance analysis of coated tools in real-life industrial experiments using statistical techniques. Surface and Coatings Technology, 1998, 99, 213-221.	2.2	7
226	Design aspects for advanced tribological surface coatings. Surface and Coatings Technology, 1998, 100-101, 1-6.	2.2	73
227	Mechanical and tribological properties of hard aluminium–carbon multilayer films prepared by the Laser-Arc technique. Surface and Coatings Technology, 1998, 107, 159-167.	2.2	6
228	Vacuum arc deposition of metal/ceramic coatings on polymer substrates. Surface and Coatings Technology, 1998, 108-109, 160-165.	2.2	26
229	Taguchi and TQM. Surface and Coatings Technology, 1998, 110, 86-93.	2.2	16
230	Structure, mechanical and tribological properties of Ti–B–N and Ti–Al–B–N multiphase thin films produced by electron-beam evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2851-2857.	0.9	71
231	Crystalline alumina deposited at low temperatures by ionized magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1084-1088.	0.9	113
232	Hard Carbon Coatings: The Way Forward. MRS Bulletin, 1997, 22, 22-26.	1.7	53
233	Economics and design aspects for continuous PVD coating systems which provide high throughput. Surface and Coatings Technology, 1997, 93, 142-149.	2.2	7
234	Very-high-rate reactive sputtering of alumina hard coatings. Surface and Coatings Technology, 1997, 96, 262-266.	2.2	50

#	Article	IF	CITATIONS
235	Structure and tribological properties of thin vacuum arc coatings on polysulfone. Surface and Coatings Technology, 1997, 94-95, 213-219.	2.2	6
236	Partially yttria-stabilized zirconia coatings produced under plasma-assisted EBPVD with bipolar pulsed bias and under electron bombardment-assisted positive bias conditions. Surface and Coatings Technology, 1997, 94-95, 123-130.	2.2	10
237	Studies of the tribological and mechanical properties of laminated CrC–SiC coatings produced by r.f. and d.c. sputtering. Tribology International, 1997, 30, 845-856.	3.0	21
238	Two-step diamond growth for reduced surface roughness. Diamond and Related Materials, 1996, 5, 332-337.	1.8	10
239	Plasma Surface Engineering of Metals. MRS Bulletin, 1996, 21, 46-51.	1.7	27
240	Widening the market for advanced PVD coatings. Journal of Materials Processing Technology, 1996, 56, 757-764.	3.1	12
241	Use of PVD deposited TiN coating in retarding high temperature sulphidation. Surface and Coatings Technology, 1996, 81, 151-158.	2.2	12
242	Deposition and characterization of nitrogen containing stainless steel coatings prepared by reactive magnetron sputtering. Vacuum, 1996, 47, 1077-1080.	1.6	8
243	Multilayer composite ceramicmetal-DLC coatings for sliding wear applications. Tribology International, 1996, 29, 559-570.	3.0	126
244	Substrate surface finish effects in duplex coatings of PAPVD TiN and CrN with electroless nickel-phosphorus interlayers. Surface and Coatings Technology, 1996, 81, 215-224.	2.2	48
245	Characterisation of a saddle field source for deposition of diamond-like carbon films. Ceramics International, 1996, 22, 1-5.	2.3	6
246	A study of the corrosion properties of PVD Zn-Ni coatings. Surface and Coatings Technology, 1995, 76-77, 508-515.	2.2	7
247	The influence of oriented growth on the surface roughness of CVD diamond films. Surface and Coatings Technology, 1995, 74-75, 358-361.	2.2	13
248	The penetration into blind holes of diamond-like carbon films produced by r.f. plasma-assisted CVD. Surface and Coatings Technology, 1995, 74-75, 710-716.	2.2	6
249	Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests. Thin Solid Films, 1995, 270, 431-438.	0.8	299
250	Hybrid techniques in surface engineering. Surface and Coatings Technology, 1995, 71, 88-92.	2.2	96
251	Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering. Surface and Coatings Technology, 1995, 73, 185-197.	2.2	89
252	An a.c. impedance study on PVD CrN-coated mild steel with different surface roughnesses. Surface and Coatings Technology, 1995, 76-77, 623-631.	2.2	20

#	Article	IF	CITATIONS
253	Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates. Surface and Coatings Technology, 1995, 76-77, 615-622.	2.2	5
254	Investigation on the sputtering effects on r.f. plasma processing. Surface and Coatings Technology, 1995, 74-75, 206-211.	2.2	0
255	An investigation into the use of a simple model for thickness uniformity on horizontal surfaces to describe thickness variations on vertical substrates. Surface and Coatings Technology, 1995, 74-75, 306-311.	2.2	7
256	X-Ray diffraction investigations of magnetron sputtered TiCN coatings. Surface and Coatings Technology, 1995, 74-75, 312-319.	2.2	50
257	PVD equipment design: concepts for increased production throughput. Surface and Coatings Technology, 1995, 74-75, 770-780.	2.2	11
258	Multi-function scratch tester. Surface and Coatings Technology, 1995, 74-75, 869-876.	2.2	7
259	An investigation into the thickness and coating structure uniformity of zirconia films on flat surfaces. Surface and Coatings Technology, 1995, 74-75, 147-154.	2.2	0
260	Investigation into the impact wear behaviour of ceramic coatings. Surface and Coatings Technology, 1995, 74-75, 857-868.	2.2	80
261	The influence of process gas characteristics on the properties of plasma nitrided steel. Surface and Coatings Technology, 1995, 76-77, 694-699.	2.2	20
262	Studies of atom beams produced by a saddle field source used for depositing diamond-like carbon films on glass. Vacuum, 1995, 46, 299-303.	1.6	19
263	Active process control of reactive sputter deposition. Vacuum, 1995, 46, 723-729.	1.6	33
264	Diamond-like carbon films grown in a new configuration for filament enhanced plasma assisted CVD. Vacuum, 1995, 46, 1305-1309.	1.6	3
265	Dynamic impact wear of TiCxNy and Ti-DLC composite coatings. Wear, 1995, 185, 151-157.	1.5	89
266	Adhesion assessment of DLC films on PET using a simple tensile tester: Comparison of different theories. Journal of Adhesion Science and Technology, 1995, 9, 769-784.	1.4	32
267	Microstructural and morphological effects on the tribological properties of electron enhanced magnetron sputtered hard coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2189-2193.	0.9	19
268	Influence of annealing on the hydrogen bonding and the microstructure of diamondlike and polymerlike hydrogenated amorphous carbon films. Physical Review B, 1995, 51, 9597-9605.	1.1	96
269	Plasmaâ€based surface engineering processes for wear and corrosion protection. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1202-1207.	0.9	41
270	Relationship between interlayer hardness and adhesion and pin-on-disc behaviour for fast atom beam source diamond-like-carbon films. Journal of Adhesion Science and Technology, 1995, 9, 725-735.	1.4	9

#	Article	IF	CITATIONS
271	Comparative Tribology Studies of Hard Ceramic and Composite Metal-DLC Coatings in Sliding Friction Conditions. Tribology Transactions, 1995, 38, 829-836.	1.1	57
272	Relative importance of bombardment energy and intensity in ion plating. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 428-435.	0.9	18
273	Adhesion of diamond-like carbon films on polymers: an assessment of the validity of the scratch test technique applied to flexible substrates. Journal of Adhesion Science and Technology, 1994, 8, 651-662.	1.4	34
274	The effect of TiN interlayers on the indentation behavior of diamond-like carbon films on alloy and compound substrates. Surface and Coatings Technology, 1994, 63, 129-134.	2.2	18
275	Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance. Surface and Coatings Technology, 1994, 70, 19-25.	2.2	92
276	The effect of process parameters on the plasma carbon diffusion treatment of stainless steels at low pressure. Surface and Coatings Technology, 1994, 63, 135-143.	2.2	15
277	Engineering applications for diamond-like carbon. Diamond and Related Materials, 1994, 3, 902-911.	1.8	235
278	Calculation of ion energy distributions in low frequency r.f. glow discharges. Surface and Coatings Technology, 1993, 59, 86-90.	2.2	2
279	Ionization in plasma-assisted physical vapour deposition systems. Surface and Coatings Technology, 1993, 61, 121-126.	2.2	22
280	A simple model for the prediction of coating thickness uniformity from limited measured data. Surface and Coatings Technology, 1993, 61, 282-286.	2.2	5
281	A comparison of the wear and fatigue properties of plasma-assisted physical vapour deposition TiN, CrN and duplex coatings on Ti-6Al-4V. Surface and Coatings Technology, 1993, 62, 600-607.	2.2	76
282	Low temperature plasma diffusion treatment of stainless steels for improved wear resistance. Surface and Coatings Technology, 1993, 62, 608-617.	2.2	158
283	The microstructural and thickness uniformity of zirconia coatings produced by r.f. ion plating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 163, 171-175.	2.6	3
284	A practical model to enable the prediction of coating thickness variations across a flat surface. Surface and Coatings Technology, 1993, 59, 48-53.	2.2	2
285	Coating thickness fall-off with source to substrate distance in PVD processes. Surface and Coatings Technology, 1993, 59, 113-116.	2.2	19
286	Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels. Surface and Coatings Technology, 1993, 60, 416-423.	2.2	58
287	TiN and CrN PVD coatings on electroless nickel-coated steel substrates. Surface and Coatings Technology, 1993, 60, 474-479.	2.2	54
288	The deposition of yttria partially stabilised zirconia (PYSZ) onto aluminum alloy substrates using PVD techniques. Surface and Coatings Technology, 1993, 60, 536-540.	2.2	0

#	Article	IF	CITATIONS
289	A computer knowledge-based system for surface coating and material selection. Surface and Coatings Technology, 1993, 62, 662-668.	2.2	12
290	Wear Mechanisms of Coated Sliding Surfaces. Tribology Series, 1993, 25, 399-407.	0.1	20
291	Influence of ï€-bonded clusters on the electronic properties of diamond-like carbon films. Diamond and Related Materials, 1993, 2, 259-265.	1.8	19
292	A Methodology for Coating Selection. Tribology Series, 1993, , 429-439.	0.1	11
293	Characterization of diamond-like carbon films by fine scale indentation measurements. Diamond and Related Materials, 1992, 1, 355-359.	1.8	7
294	Process parameters and directional effects on the optical properties of carbon films grown by plasma assisted PVD. Diamond and Related Materials, 1992, 1, 445-449.	1.8	1
295	Diamond for wear and corrosion applications. Diamond and Related Materials, 1992, 1, 1049-1064.	1.8	60
296	Preface to the proceedings of the 2nd European conference on diamond, diamond-like and related coatings, Nice, France, September 2–6, 1991. Diamond and Related Materials, 1992, 1, xv.	1.8	0
297	The influence of process system characteristics on the uniformity of ion plated titanium nitride coatings. Vacuum, 1992, 43, 235-240.	1.6	10
298	Preface to the proceedings of the 1st European conference on diamond and diamond-like carbon coatings, Crans-Montana, September 17–19, 1990. Diamond and Related Materials, 1991, 1, ix.	1.8	0
299	European Joint Committee on Plasma and Ion Surface Engineering: UK group launched. Surface Engineering, 1991, 7, 171-171.	1.1	Ο
300	Determination of electron temperature in ion plating discharges by optical emission spectroscopy. Vacuum, 1991, 42, 1013-1015.	1.6	11
301	An investigation into the effects of plasma bombardment anisotropy in low frequency r.f. glow discharges. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 517-522.	2.6	7
302	A coating thickness uniformity model for physical vapour deposition systems—further validity tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 576-582.	2.6	17
303	Evaluation of some new titanium-based ceramic coatings in tribological model wear and metal-cutting tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 602-608.	2.6	14
304	A comparative study of the corrosion performance of TiN, Ti(B,N) and (Ti,Al)N coatings produced by physical vapour deposition methods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 722-726.	2.6	64
305	Evaluation of some titanium-based ceramic coatings on high speed steel cutting tools. Surface and Coatings Technology, 1991, 49, 468-473.	2.2	34
306	Physical properties of carbon films produced using a hybrid physical vapour deposition technique. Surface and Coatings Technology, 1991, 47, 315-326.	2.2	4

#	Article	IF	CITATIONS
307	The optical and mechanical properties of carbon films grown using a fast atom beam source. Surface and Coatings Technology, 1991, 47, 722-729.	2.2	15
308	Raman spectra of hard carbon films and hard carbon films containing secondary elements. Carbon, 1991, 29, 225-231.	5.4	32
309	Corrosion performance of some titanium-based hard coatings. Surface and Coatings Technology, 1991, 49, 489-495.	2.2	164
310	Optical properties of carbon films deposited using a hybrid physical vapour deposition technique. Surface and Coatings Technology, 1991, 47, 327-335.	2.2	1
311	Plasma Nitriding in a Low Pressure Triode Discharge to Provide Improvements in Adhesion and Load Support for Wear Resistant Coatings. Surface Engineering, 1991, 7, 207-215.	1.1	102
312	Paper XX (i) Coating evaluation methods: a round robin study. Tribology Series, 1990, , 453-463.	0.1	5
313	An investigation into the variation in bombardment intensity from ion plating discharges by sputter weight loss experiments. Thin Solid Films, 1990, 193-194, 171-180.	0.8	11
314	The characterization of ultra-hard carbon films produced from pre-processed carbon powder in a hybrid physical vapor deposition system. Carbon, 1990, 28, 641-655.	5.4	6
315	Comparative tribological and adhesion studies of some titanium-based ceramic coatings. Surface and Coatings Technology, 1990, 43-44, 888-897.	2.2	36
316	A comparison of the properties of hard carbon films produced by direct gas deposition and plasma-assisted evaporation. Surface and Coatings Technology, 1990, 43-44, 88-98.	2.2	9
317	Characteristics of a dual purpose cathodic arc/magnetron sputtering system. Surface and Coatings Technology, 1990, 43-44, 288-298.	2.2	22
318	Developments in r.f. plasma-assisted physical vapour deposition partially yttria-stabilized zirconia thermal barrier coatings. Surface and Coatings Technology, 1990, 43-44, 436-445.	2.2	9
319	Corrosion performance of layered coatings produced by physical vapour deposition. Surface and Coatings Technology, 1990, 43-44, 481-492.	2.2	84
320	Enhanced plasma nitriding at low pressures: A comparative study of d.c. and r.f. techniques. Surface and Coatings Technology, 1990, 41, 295-304.	2.2	75
321	Thermal stability of partially-yttria-stabilized zirconia thermal barrier coatings deposited by r.f. plasma-assisted physical vapour deposition. Surface and Coatings Technology, 1990, 41, 305-313.	2.2	23
322	Process effects in ion plating. Vacuum, 1990, 41, 2196-2200.	1.6	27
323	Evaporative ion plating: process mechanisms and optimization. IEEE Transactions on Plasma Science, 1990, 18, 869-877.	0.6	33
324	Metal clusters in ion plating. Applied Physics Letters, 1989, 55, 834-836.	1.5	24

#	Article	IF	CITATIONS
325	Characterisation of carbon films containing boron and nitrogen. Carbon, 1989, 27, 899-907.	5.4	7
326	A perspective on Japanese patents on hard carbon/ diamond films and related subjects 1967–1987. Surface and Coatings Technology, 1989, 38, 251-266.	2.2	4
327	Triode technology in the sputter deposition of carbon films. Carbon, 1988, 26, 229-234.	5.4	10
328	lon plating processes: Design criteria and system optimization. Surface and Coatings Technology, 1988, 36, 233-242.	2.2	30
329	The use of scratch adhesion testing for the determination of interfacial adhesion: The importance of frictional drag. Surface and Coatings Technology, 1988, 36, 503-517.	2.2	251
330	Some fundamental aspects of glow discharges in plasma-assisted processes. Surface and Coatings Technology, 1987, 33, 17-29.	2.2	40
331	Thermionically assisted r.f. plasma assisted physical vapour deposition of stabilized zirconia thermal barrier coatings. Surface and Coatings Technology, 1987, 32, 377-387.	2.2	20
332	Knowledge-based expert systems in surface coating and treatment selection for wear reduction. Surface and Coatings Technology, 1987, 33, 105-115.	2.2	12
333	Assessment of Coating Adhesion. Surface Engineering, 1986, 2, 49-54.	1.1	68
334	Coating and Treatment Selection. Surface Engineering, 1986, 2, 249-256.	1.1	6
335	Substrate temperature monitoring in plasma assisted processes. Vacuum, 1986, 36, 61-65.	1.6	4
336	Ionization assisted physical vapor deposition of zirconia thermal barrier coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 2656-2660.	0.9	34
337	Problems in the physical vapour deposition of titanium nitride. Thin Solid Films, 1985, 126, 283-291.	0.8	53
338	Titanium Nitride PVD Coating Technology. Surface Engineering, 1985, 1, 93-104.	1.1	110
339	Developments in ionization assisted processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 2354-2363.	0.9	67
340	TiN coating adhesion studies using the scratch test method. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 2411-2414.	0.9	124
341	A pellet feeder for pulsed evaporation. Vacuum, 1984, 34, 805-806.	1.6	2
342	Heating effects in ionization-assisted processes. Thin Solid Films, 1984, 117, 261-267.	0.8	24

#	Article	IF	CITATIONS
343	Intelligent knowledge-based systems for tribological coating selection. Thin Solid Films, 1983, 109, 305-311.	0.8	7
344	A predictive model for specimen heating during ion plating. Vacuum, 1982, 32, 311-317.	1.6	13
345	Characteristics of a thermionically assisted triode ion-plating system. Thin Solid Films, 1981, 80, 41-48.	0.8	49
346	Ion-plated aluminium bronze coatings for sheet metal forming dies. Thin Solid Films, 1980, 73, 309-314.	0.8	9
347	Evaluation of coating wear resistance for bulk metal forming. Thin Solid Films, 1980, 73, 315-321.	0.8	21
348	Deposition of Ti-N compounds by thermionically assisted triode reactive ion plating. Thin Solid Films, 1980, 72, 541-549.	0.8	83
349	Optimization of Nanostructured Tribological Coatings. , 0, , 511-538.		0