Chun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6835805/publications.pdf

Version: 2024-02-01

147801 138484 3,645 82 31 citations h-index papers

g-index 82 82 82 3066 all docs docs citations times ranked citing authors

58

#	Article	IF	CITATIONS
1	An improved Markov chain model with modified turbulence diffusion for predicting indoor particle transport. Building and Environment, 2022, 209, 108682.	6.9	4
2	Predicting transient particle transport in periodic ventilation using Markov chain model with pre-stored transition probabilities. Building and Environment, 2022, 211, 108730.	6.9	8
3	Evaluation of SARS-CoV-2 transmission in COVID-19 isolation wards: On-site sampling and numerical analysis. Journal of Hazardous Materials, 2022, 436, 129152.	12.4	20
4	Removal of Size-Dependent Submicron Particles Using Metal–Organic Framework-Based Nanofiber Air Filters. ACS Applied Materials & Diterfaces, 2022, 14, 23570-23576.	8.0	15
5	Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space. Journal of Hazardous Materials, 2022, 436, 129241.	12.4	13
6	Enhanced radiative cooling paint with broken glass bubbles. Renewable Energy, 2022, 194, 129-136.	8.9	10
7	Air infiltration rates in residential units of a public housing estate in Hong Kong. Building and Environment, 2022, 219, 109211.	6.9	12
8	Investigating the Influence of Metal–Organic Framework Loading on the Filtration Performance of Electrospun Nanofiber Air Filters. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27096-27106.	8.0	9
9	A combined deep learning and physical modelling method for estimating air pollutants' source location and emission profile in street canyons. Building and Environment, 2022, 219, 109246.	6.9	5
10	Evolution of pressure drop across electrospun nanofiber filters clogged by solid particles and its influence on indoor particulate air pollution control. Journal of Hazardous Materials, 2021, 402, 123479.	12.4	31
11	Investigation of pressure drop in flexible ventilation ducts under different compression ratios and bending angles. Building Simulation, 2021, 14, 1251-1261.	5.6	5
12	An optimization approach for fabricating electrospun nanofiber air filters with minimized pressure drop for indoor PM2.5 control. Building and Environment, 2021, 188, 107449.	6.9	25
13	Coupling spectral-dependent radiative cooling with building energy simulation. Building and Environment, 2021, 197, 107841.	6.9	16
14	Exploring the relationship between particle deposition and near-wall turbulence quantities in the built environment. Building and Environment, 2021, 196, 107814.	6.9	3
15	Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy, 2021, 85, 106015.	16.0	43
16	Estimating longâ€term timeâ€resolved indoor PM _{2.5} of outdoor and indoor origin using easily obtainable inputs. Indoor Air, 2021, 31, 2020-2032.	4.3	4
17	A reinforcement learning approach for control of window behavior to reduce indoor PM2.5 concentrations in naturally ventilated buildings. Building and Environment, 2021, 200, 107978.	6.9	14
18	Moderating effect of self-efficacy on the association of intimate partner violence with risky sexual behaviors among men who have sex with men in China. BMC Infectious Diseases, 2021, 21, 895.	2.9	4

#	Article	IF	Citations
19	Exploring the feasibility of predicting contaminant transport using a stand-alone Markov chain solver based on measured airflow in enclosed environments. Building and Environment, 2021, 202, 108027.	6.9	5
20	Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy, 2021, 88, 106259.	16.0	129
21	Influence of fiber diameter, filter thickness, and packing density on PM2.5 removal efficiency of electrospun nanofiber air filters for indoor applications. Building and Environment, 2020, 170, 106628.	6.9	98
22	Modeling transient particle transport in transient indoor airflow by fast fluid dynamics with the Markov chain method. Building and Environment, 2020, 186, 107323.	6.9	18
23	Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability, 2020, 12, 8083.	3.2	25
24	Computer-aided design of a new cabin supply air nozzle in commercial airplanes for reducing particle deposition. Building and Environment, 2020, 186, 107324.	6.9	5
25	Rapid field measurement of ventilation rate using a quartz-enhanced photoacoustic SF ₆ gas sensor. Measurement Science and Technology, 2020, 31, 085105.	2.6	10
26	Influence of surface roughness on particle deposition distribution around multi-slot cabin supply air nozzles of commercial airplanes. Building and Environment, 2020, 176, 106870.	6.9	12
27	Makeshift hospitals for COVID-19 patients: where health-care workers and patients need sufficient ventilation for more protection. Journal of Hospital Infection, 2020, 105, 98-99.	2.9	63
28	Influence of nanofiber window screens on indoor PM2.5 of outdoor origin and ventilation rate: An experimental and modeling study. Building Simulation, 2020, 13, 873-886.	5.6	15
29	A simulation study for comparing the cooling performance of different daytime radiative cooling materials. Solar Energy Materials and Solar Cells, 2020, 209, 110459.	6.2	25
30	Toward understanding the evolution of incense particles on nanofiber filter media: Its influence on PM2.5 removal efficiency and pressure drop. Building and Environment, 2020, 172, 106725.	6.9	31
31	Effective removal of particles down to 15Ânm using scalable metal-organic framework-based nanofiber filters. Applied Materials Today, 2020, 20, 100653.	4.3	19
32	A general anion exchange strategy to transform metal-organic framework embedded nanofibers into high-performance lithium-ion capacitors. Nano Energy, 2020, 75, 104935.	16.0	32
33	Differentiating between direct and indirect exposure to exhaled particles in indoor environments with mechanical ventilation systems. E3S Web of Conferences, 2019, 111, 04034.	0.5	2
34	Integration of fast fluid dynamics and Markov chain model for predicting transient particle transport in buildings. E3S Web of Conferences, 2019, 111, 04030.	0.5	1
35	Modeling transient particle transport by fast fluid dynamics with the Markov chain method. Building Simulation, 2019, 12, 881-889.	5.6	21
36	Comparison of the linear regression, multinomial logit, and ordered probability models for predicting the distribution of thermal sensation. Energy and Buildings, 2019, 188-189, 269-277.	6.7	23

#	Article	IF	Citations
37	Experimental measurements and large eddy simulation of particle deposition distribution around a multi-slot diffuser. Building and Environment, 2019, 150, 156-163.	6.9	20
38	Differentiating between indoor exposure to PM2.5 of indoor and outdoor origin using time-resolved monitoring data. Building and Environment, 2019, 147, 528-539.	6.9	28
39	A simple method for differentiating direct and indirect exposure to exhaled contaminants in mechanically ventilated rooms. Building Simulation, 2018, 11, 1039-1051.	5.6	14
40	Electrospun SF/PVA Nanofiber Filters for Highly Efficient PM \$_{2.5}\$ Capture. IEEE Nanotechnology Magazine, 2018, 17, 934-939.	2.0	40
41	An ordered probability model for predicting outdoor thermal comfort. Energy and Buildings, 2018, 168, 261-271.	6.7	21
42	Relationship between pressure drop and face velocity for electrospun nanofiber filters. Energy and Buildings, 2018, 158, 987-999.	6.7	81
43	Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane. Applied Optics, 2018, 57, 8005.	1.8	9
44	Influence of natural ventilation rate on indoor PM2.5 deposition. Building and Environment, 2018, 144, 357-364.	6.9	62
45	Experimental and modeling study of pressure drop across electrospun nanofiber air filters. Building and Environment, 2018, 142, 244-251.	6.9	60
46	Prediction of particle deposition around the cabin air supply nozzles of commercial airplanes using measured in-cabin particle emission rates. Indoor Air, 2018, 28, 852-865.	4.3	12
47	Metal–organic framework-based nanofiber filters for effective indoor air quality control. Journal of Materials Chemistry A, 2018, 6, 15807-15814.	10.3	169
48	A method for assessing the performance of nanofiber films coated on window screens in reducing residential exposures to PM _{2.5} of outdoor origin in Beijing. Indoor Air, 2017, 27, 1190-1200.	4.3	36
49	Development of nanofiber filters with high PM <inf>2.5</inf> removal efficiency and low air resistance., 2017,,.		0
50	Assessment of Reduction in Indoor PM 2.5 of Outdoor Origin by using Nanofiber Filters as Window Screens. Procedia Engineering, 2017, 205, 2386-2392.	1.2	4
51	Modeling particle deposition on the surfaces around a multi-slot diffuser. Building and Environment, 2016, 107, 79-89.	6.9	25
52	Modeling of gasper-induced jet flow and its impact on cabin air quality. Energy and Buildings, 2016, 127, 700-713.	6.7	22
53	A method of assessing the energy cost saving from using an effective door closer. Energy and Buildings, 2016, 118, 329-338.	6.7	4
54	Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numerical Heat Transfer; Part A: Applications, 2016, 69, 748-762.	2.1	44

#	Article	IF	CITATIONS
55	Optimization of air supply location, size, and parameters in enclosed environments using a computational fluid dynamics-based adjoint method. Journal of Building Performance Simulation, 2016, 9, 149-161.	2.0	27
56	Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method. Energy and Buildings, 2015, 104, 147-155.	6.7	46
57	Accelerating the Lagrangian Method for Modeling Transient Particle Transport in Indoor Environments. Aerosol Science and Technology, 2015, 49, 351-361.	3.1	33
58	A Markov chain model for predicting transient particle transport in enclosed environments. Building and Environment, 2015, 90, 30-36.	6.9	68
59	Comparing the Markov Chain Model with the Eulerian and Lagrangian Models for Indoor Transient Particle Transport Simulations. Aerosol Science and Technology, 2015, 49, 857-871.	3.1	50
60	Simplified models for exhaled airflow from a cough with the mouth covered. Indoor Air, 2014, 24, 580-591.	4.3	53
61	Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method. Indoor Air, 2014, 24, 81-92.	4.3	59
62	Systematic study of person-to-person contaminant transport in mechanically ventilated spaces (RP-1458). HVAC and R Research, 2014, 20, 80-91.	0.6	19
63	A field investigation and comparative study of indoor environmental quality in heritage Chinese rural buildings with thick rammed earth wall. Energy and Buildings, 2013, 62, 286-293.	6.7	46
64	A hybrid model for investigating transient particle transport in enclosed environments. Building and Environment, 2013, 62, 45-54.	6.9	47
65	Measuring the Short-Term Emission Rates of Particles in the "Personal Cloudâ€with Different Clothes and Activity Intensities in a Sealed Chamber. Aerosol and Air Quality Research, 2013, 13, 911-921.	2.1	79
66	Assessing the Influence of Indoor Exposure to "Outdoor Ozone―on the Relationship between Ozone and Short-term Mortality in U.S. Communities. Environmental Health Perspectives, 2012, 120, 235-240.	6.0	118
67	Developing an Empirical Equation for Modeling Particle Deposition Velocity onto Inclined Surfaces in Indoor Environments. Aerosol Science and Technology, 2012, 46, 1090-1099.	3.1	24
68	Indoor Exposure to "Outdoor PM10― Epidemiology, 2012, 23, 870-878.	2.7	114
69	Characterizing the household energy consumption in heritage Nanjing Tulou buildings, China: A comparative field survey study. Energy and Buildings, 2012, 49, 317-326.	6.7	40
70	A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, 2012, 47, 339-348.	6.9	104
71	Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 2011, 45, 275-288.	4.1	710
72	Lagrangian Stochastic Particle Tracking: Further Discussion. Aerosol Science and Technology, 2011, 45, 901-902.	3.1	11

#	Article	IF	CITATION
73	Preventing the entry of outdoor particles with the indoor positive pressure control method: Analysis of influencing factors and cost. Building and Environment, 2011, 46, 1167-1173.	6.9	24
74	Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method. Journal of Hazardous Materials, 2011, 186, 1290-1299.	12.4	19
75	Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong. Journal of the Royal Society Interface, 2011, 8, 699-710.	3.4	55
76	A simplified methodology for the prediction of mean air velocity and particle concentration in isolation rooms with downward ventilation systems. Building and Environment, 2010, 45, 1847-1853.	6.9	14
77	Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation. Indoor Air, 2010, 20, 95-111.	4.3	194
78	Comparison of Three Approaches to Model Particle Penetration Coefficient through a Single Straight Crack in a Building Envelope. Aerosol Science and Technology, 2010, 44, 405-416.	3.1	35
79	The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics. Journal of the Royal Society Interface, 2010, 7, 1105-1118.	3.4	94
80	How Many Airborne Particles Emitted from a Nurse will Reach the Breathing Zone/Body Surface of the Patient in ISO Class-5 Single-Bed Hospital Protective Environments?—A Numerical Analysis. Aerosol Science and Technology, 2009, 43, 990-1005.	3.1	39
81	Modeling of ultrafine particle dispersion in indoor environments with an improved drift flux model. Journal of Aerosol Science, 2009, 40, 29-43.	3.8	97
82	The Mathematical Model and Computer Simulation of an LCI Drive. Electric Power Components and Systems, 1987, 13, 195-206.	0.1	0