Zhaoming Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6835492/publications.pdf

Version: 2024-02-01

394421 454955 1,652 37 19 30 citations h-index g-index papers 41 41 41 2472 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Ultrahigh Molecular Weight Polyethylene Lamellarâ€Thin Framework on Square Meter Scale. Advanced Materials, 2022, 34, e2107941.	21.0	7
2	Cryo-EM analysis of Ebola virus nucleocapsid-like assembly. STAR Protocols, 2022, 3, 101030.	1.2	O
3	Cryo-EM advances in RNA structure determination. Signal Transduction and Targeted Therapy, 2022, 7, 58.	17.1	54
4	Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells., 2022, 19, 577-587.		22
5	SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein and Cell, 2022, 13, 602-614.	11.0	15
6	Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nature Communications, 2022, 13, 2617.	12.8	9
7	Structural analyses of an RNA stability element interacting with poly(A). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
8	Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1ÂÃ resolution. Nature, 2021, 596, 603-607.	27.8	59
9	Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Research, 2021, 31, 1263-1274.	12.0	51
10	DNA nanostructures directed by RNA clamps. Nanoscale, 2021, , .	5.6	1
11	Structure of the translating $\langle i \rangle$ Neurospora $\langle i \rangle$ ribosome arrested by cycloheximide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
12	Full-length three-dimensional structure of the influenza A virus M1 protein and its organization into a matrix layer. PLoS Biology, 2020, 18, e3000827.	5.6	20
13	Cryogenic Correlative Singleâ€Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angewandte Chemie, 2020, 132, 15772-15778.	2.0	1
14	Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nature Methods, 2020, 17, 699-707.	19.0	119
15	Measurement of atom resolvability in cryo-EM maps with Q-scores. Nature Methods, 2020, 17, 328-334.	19.0	230
16	Cryogenic Correlative Singleâ€Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angewandte Chemie - International Edition, 2020, 59, 15642-15648.	13.8	8
17	Title is missing!. , 2020, 18, e3000827.		O
18	Title is missing!. , 2020, 18, e3000827.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 18, e3000827.		O
20	Title is missing!. , 2020, 18, e3000827.		0
21	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & Spatial Control Cont	8.0	27
22	Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nature Structural and Molecular Biology, 2019, 26, 1094-1105.	8.2	52
23	Cryo-EM structure of a 40ÂkDa SAM-IV riboswitch RNA at 3.7 à resolution. Nature Communications, 2019, 10, 5511.	12.8	90
24	Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell, 2018, 172, 966-978.e12.	28.9	51
25	Structure of the 30ÂkDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure, 2018, 26, 490-498.e3.	3.3	52
26	Programming molecular topologies from single-stranded nucleic acids. Nature Communications, 2018, 9, 4579.	12.8	39
27	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie - International Edition, 2017, 56, 14632-14636.	13.8	76
28	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie, 2017, 129, 14824-14828.	2.0	20
29	An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Reports, 2015, 11, 376-389.	6.4	136
30	Membrane-Permeabilizing Activity of Reverse-Amide 2-Aminoimidazole Antibiofilm Agents Against Acinetobacter baumannii. Current Drug Delivery, 2015, 12, 223-230.	1.6	14
31	Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, 2014, 83, 1043-1050.	8.1	289
32	N-Substituted 2-aminoimidazoleinhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Organic and Biomolecular Chemistry, 2013, 11, 130-137.	2.8	34
33	Structural Studies on 4,5â€Disubstituted 2â€Aminoimidazoleâ€Based Biofilm Modulators that Suppress Bacterial Resistance to βâ€Lactams. ChemMedChem, 2012, 7, 2030-2039.	3.2	24
34	A modular approach to the synthesis of 1,4,5-substituted-2-aminoimidazoles. Tetrahedron Letters, 2012, 53, 1204-1206.	1.4	13
35	Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki–Miyaura cross-coupling. Organic and Biomolecular Chemistry, 2011, 9, 3041.	2.8	39
36	Evaluation of 4,5â€Disubstitutedâ€2â€Aminoimidazole–Triazole Conjugates for Antibiofilm/Antibiotic Resensitization Activity Against MRSA and <i>Acinetobacter baumannii</i> . ChemMedChem, 2011, 6, 2243-2251.	3.2	42

#	Article	IF	CITATIONS
37	A nitroenolate approach to the synthesis of 4,5-disubstituted-2-aminoimidazoles. Pilot library assembly and screening for antibiotic and antibiofilm activity. Organic and Biomolecular Chemistry, 2010, 8, 2814.	2.8	15