Leilei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6834950/publications.pdf

Version: 2024-02-01

		759233	677142
28	538	12	22
papers	citations	h-index	g-index
28	28	28	607
20	20	20	007
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chemistry, 2020, 330, 127266.	8.2	95
2	Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L Biomolecules, 2021, 11, 975.	4.0	54
3	Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice. Molecules, 2021, 26, 570.	3.8	45
4	Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Research International, 2021, 140, 110039.	6.2	35
5	Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses. Frontiers in Plant Science, 2021, 12, 626301.	3.6	32
6	Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrasonics Sonochemistry, 2022, 84, 105954.	8.2	27
7	Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chemistry, 2020, 332, 127415.	8.2	25
8	The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods, 2020 , 9 , 1156 .	4.3	23
9	The UHPLC-QTOF-MS Phenolic Profiling and Activity of Cydonia oblonga Mill. Reveals a Promising Nutraceutical Potential. Foods, 2021, 10, 1230.	4.3	20
10	Optimized Ultrasound-Assisted Enzymatic Extraction of Phenolic Compounds from Rosa canina L. Pseudo-Fruits (Rosehip) and Their Biological Activity. Antioxidants, 2022, 11, 1123.	5.1	20
11	The Metabolic Reprogramming Induced by Sub-Optimal Nutritional and Light Inputs in Soilless Cultivated Green and Red Butterhead Lettuce. International Journal of Molecular Sciences, 2020, 21, 6381.	4.1	19
12	The functional potential of nine Allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chemistry, 2022, 368, 130782.	8.2	17
13	Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Science, 2022, 322, 111346.	3.6	13
14	Profiling of polyphenols and sesquiterpenoids using different extraction methods in Muscari turcicum, an endemic plant from Turkey. Industrial Crops and Products, 2020, 154, 112626.	5.2	12
15	UHPLC-QTOF-MS based metabolomics and biological activities of different parts of Eriobotrya japonica. Food Research International, 2021, 143, 110242.	6.2	12
16	Untargeted Phytochemical Profile, Antioxidant Capacity and Enzyme Inhibitory Activity of Cultivated and Wild Lupin Seeds from Tunisia. Molecules, 2021, 26, 3452.	3.8	11
17	Metabolomic profiling and biological properties of six <i>Limonium </i> species: novel perspectives for nutraceutical purposes. Food and Function, 2021, 12, 3443-3454.	4.6	11
18	The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). Plants, 2021, 10, 2430.	3 . 5	10

#	Article	IF	CITATIONS
19	The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce. Plants, 2021, 10, 1457.	3.5	9
20	Metabolomics and Physiological Insights into the Ability of Exogenously Applied Chlorogenic Acid and Hesperidin to Modulate Salt Stress in Lettuce Distinctively. Molecules, 2021, 26, 6291.	3.8	9
21	A Phenomics and Metabolomics Investigation on the Modulation of Drought Stress by a Biostimulant Plant Extract in Tomato (Solanum lycopersicum). Agronomy, 2022, 12, 764.	3.0	9
22	A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. Plant Science, 2021, 309, 110955.	3.6	7
23	The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates. Molecules, 2022, 27, 435.	3.8	6
24	Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce (Lactuca sativa L.) Varieties. Plants, 2021, 10, 91.	3. 5	4
25	Phytochemical Constituents and Biological Activities of the Unexplored Plant Rhinanthus angustifolius subsp. grandiflorus. Applied Sciences (Switzerland), 2021, 11, 9162.	2.5	4
26	Untargeted Phenolic Profiling and Functional Insights of the Aerial Parts and Bulbs of Drimia maritima (L.) Stearn. Plants, 2022, 11, 600.	3.5	4
27	Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum) Tj ETQq1 1 0. Treatments. Plants, 2022, 11, 1829.	.784314 r _s 3.5	gBT /Overloc 3
28	Dataset on the Effects of Different Pre-Harvest Factors on the Metabolomics Profile of Lettuce (Lactuca sativa L.) Leaves. Data, 2020, 5, 119.	2.3	2