
Milenis Acosta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6834673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of top layer thickness on the performance of WO3/Ag/WO3-transparent electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 19063-19069.	2.2	4
2	Morphological, Structural, and Optical Bandgap Characterization of Extracted ZnO Nanoparticles from Commercial Paste. Advances in Materials Science and Engineering, 2021, 2021, 1-7.	1.8	4
3	Electrical percolation threshold evaluation of silver thin films for multilayer WO3/Ag/WO3 transparent conductive oxide. Materials Letters, 2020, 260, 126913.	2.6	10
4	Photocurrent enhancement estimation of P3HT:PCBM:Au films as a function of gold nanoparticles concentration. Gold Bulletin, 2020, 53, 141-145.	2.4	0
5	Optical absorption enhancement of P3HT:PCBM films through nanocavities using polystyrene as a template. Materials Letters, 2019, 245, 65-67.	2.6	7
6	AZO/Ag/AZO multilayers electrodes evaluated using a photonic flux density figure of merit for solar cells applications. Superlattices and Microstructures, 2019, 127, 49-53.	3.1	23
7	Structural, optical and photoelectrochemical properties ofÂtungsten oxide thin films grown by non-reactive RF-sputtering. Superlattices and Microstructures, 2019, 127, 123-127.	3.1	12
8	Effect of the substrate temperature on the physical properties of sprayed-CdS films by using an automatized perfume atomizer. Materials Science in Semiconductor Processing, 2018, 79, 7-13.	4.0	22
9	Room-temperature ITO electrodes evaluated for organic solar cells using a photonic flux density figure of merit. Journal of Materials Science: Materials in Electronics, 2018, 29, 11059-11064.	2.2	3
10	Study of ZnS/CdS structures for solar cells applications. Optik, 2017, 148, 95-100.	2.9	19
11	Correlation of residual stress variations to electrical properties changes in ZNO thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 14685-14688.	2.2	1
12	N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	2
13	Morphological and chemical study of CdTe thin films annealed in CHClF 2 –O 2 gas mixture. Solar Energy, 2014, 107, 305-313.	6.1	6
14	Photothermal model fitting in the complex plane for thermal properties determination in solids. Review of Scientific Instruments, 2013, 84, 024903.	1.3	6
15	Physical Properties of Macroporous Tungsten Oxide Thin Films and Their Impact on the Photocurrent Density. International Journal of Photoenergy, 2013, 2013, 1-8.	2.5	7
16	Effects of the Argon Pressure on the Optical Band Gap of Zinc Oxide Thin Films Grown by Nonreactive RF Sputtering. Advances in Condensed Matter Physics, 2013, 2013, 1-6.	1.1	12
17	Effects of working pressure on physical properties of tungsten-oxide thin films sputtered from oxide target. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 329-333.	2.1	16
18	Optical properties of tungsten oxide thin films by non-reactive sputtering. Thin Solid Films, 2009, 517, 5442-5445.	1.8	31

MILENIS ACOSTA

#	Article	IF	CITATIONS
19	YBa2Cu3Ox superconducting transition measurement by an electromagnetic acoustic transducer. Review of Scientific Instruments, 2006, 77, 033903.	1.3	3
20	Comparative analysis of the complex susceptibility of YBCO films at different temperatures and magnetic fields. Physica C: Superconductivity and Its Applications, 2003, 398, 152-156.	1.2	2
21	Josephson modulations of critical current above 77 K in YBa2Cu3O7–Au thin film composites grown on LaAlO3. Physica C: Superconductivity and Its Applications, 2001, 356, 233-238.	1.2	1
22	Comparative analysis of the determination of Jc of YBCO films at different temperatures and magnetic fields by means of the shielding technique Physica C: Superconductivity and Its Applications, 2000, 341-348, 2051-2052.	1.2	2
23	Screening technique measurement of ac imaginary susceptibility and critical current density of YBa2Cu3O7â~δ films. Journal of Applied Physics, 2000, 87, 2460-2463.	2.5	3
24	Influence of the sputtering variables in the ion bombardment during off-axis deposition of YBa2Cu3Ox films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2879-2884.	2.1	6
25	Magnetic field dependence of the critical current in polycrystalline YBCO bridges with decreasing width. Physica C: Superconductivity and Its Applications, 1999, 313, 319-325.	1.2	1
26	Transition from magnetic Fraunhofer-like to interferometric behavior in YBCO bridges with decreasing width. Physica C: Superconductivity and Its Applications, 1995, 242, 191-196.	1.2	5