
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6834431/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 2013, 128, 150-161.                                                                                | 11.0 | 406       |
| 2  | Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature,<br>2005, 436, 201-206.                                                                                                                   | 27.8 | 290       |
| 3  | Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 2011,<br>59, 1753-1771.                                                                                                                   | 3.4  | 263       |
| 4  | Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System. Natural Hazards, 2001, 23,<br>365-387.                                                                                                                          | 3.4  | 142       |
| 5  | Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solutions, 2008, 12, 23-32.                                                                                                          | 4.3  | 121       |
| 6  | Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI)<br>technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation,<br>2012, 18, 232-242.                  | 2.8  | 107       |
| 7  | Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes.<br>Geomatics, Natural Hazards and Risk, 2013, 4, 226-240.                                                                                    | 4.3  | 102       |
| 8  | Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 2014, 154, 46-60.                                                                              | 11.0 | 81        |
| 9  | Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by<br>SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Advances in Space<br>Research, 2019, 63, 1719-1736. | 2.6  | 77        |
| 10 | Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS<br>data in 2008–2010. Earth and Planetary Science Letters, 2014, 401, 159-171.                                                            | 4.4  | 62        |
| 11 | On causes and impacts of land subsidence in Bandung Basin, Indonesia. Environmental Earth Sciences, 2013, 68, 1545-1553.                                                                                                                   | 2.7  | 54        |
| 12 | CRUSTAL DEFORMATION STUDIES IN JAVA (INDONESIA) USING GPS. Journal of Earthquake and Tsunami, 2009, 03, 77-88.                                                                                                                             | 1.3  | 49        |
| 13 | On correlation between urban development, land subsidence and flooding phenomena in Jakarta.<br>Proceedings of the International Association of Hydrological Sciences, 0, 370, 15-20.                                                      | 1.0  | 49        |
| 14 | A comprehensive model of postseismic deformation of the 2004 Sumatra–Andaman earthquake<br>deduced from GPS observations in northern Sumatra. Journal of Asian Earth Sciences, 2014, 88,<br>218-229.                                       | 2.3  | 48        |
| 15 | Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth,<br>Planets and Space, 2009, 61, e29-e32.                                                                                                  | 2.5  | 47        |
| 16 | Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation. Journal of Disaster<br>Research, 2012, 7, 12-18.                                                                                                            | 0.7  | 45        |
| 17 | The contribution of human activities to subsurface environment degradation in Greater Jakarta Area,<br>Indonesia. Science of the Total Environment, 2009, 407, 3129-3141.                                                                  | 8.0  | 44        |
| 18 | Migration of seismicity and earthquake interactions monitored by GPS in SE Asia triple junction:<br>Sulawesi Indonesia Journal of Geophysical Research, 2002, 107, ETG 7-1-ETG 7-11                                                        | 3.3  | 41        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Land subsidence characteristics of the Bandung Basin, Indonesia, as estimated from GPS and InSAR.<br>Journal of Applied Geodesy, 2008, 2, .                                                                                                             | 1.1 | 34        |
| 20 | Subsidence and uplift of Sidoarjo (East Java) due to the eruption of the Lusi mud volcano<br>(2006–present). Environmental Geology, 2009, 57, 833-844.                                                                                                  | 1.2 | 34        |
| 21 | Investigation of the best coseismic fault model of the 2006 Java tsunami earthquake based on mechanisms of postseismic deformation. Journal of Asian Earth Sciences, 2016, 117, 64-72.                                                                  | 2.3 | 34        |
| 22 | Land Subsidence in Bandung Basin and its Possible Caused Factors. Procedia Earth and Planetary<br>Science, 2015, 12, 47-62.                                                                                                                             | 0.6 | 33        |
| 23 | Long-Term Consecutive DInSAR for Volume Change Estimation of Land Deformation. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 259-270.                                                                                                   | 6.3 | 29        |
| 24 | Long aseismic slip duration of the 2006 Java tsunami earthquake based on GPS data. Earthquake<br>Science, 2016, 29, 291-298.                                                                                                                            | 0.9 | 26        |
| 25 | Study on the risk and impacts of land subsidence in Jakarta. Proceedings of the International Association of Hydrological Sciences, 0, 372, 115-120.                                                                                                    | 1.0 | 26        |
| 26 | Understanding the 2007–2008 eruption of Anak Krakatau Volcano by combining remote sensing<br>technique and seismic data. International Journal of Applied Earth Observation and Geoinformation,<br>2012, 14, 73-82.                                     | 2.8 | 21        |
| 27 | Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17,<br>2006 South off Java Island Earthquake and Tsunami, Indonesia. Earth, Planets and Space, 2007, 59,<br>1055-1059.                                    | 2.5 | 18        |
| 28 | Measuring ground deformation of the tropical volcano, Ibu, using ALOS-PALSAR data. Remote Sensing<br>Letters, 2010, 1, 37-44.                                                                                                                           | 1.4 | 16        |
| 29 | On Integration of Geodetic Observation Results for Assessment of Land Subsidence Hazard Risk in<br>Urban Areas of Indonesia. International Association of Geodesy Symposia, 2015, , 435-442.                                                            | 0.4 | 14        |
| 30 | Low-cost GPS-based volcano deformation monitoring at Mt. Papandayan, Indonesia. Journal of<br>Volcanology and Geothermal Research, 2002, 115, 139-151.                                                                                                  | 2.1 | 13        |
| 31 | Studying Land Subsidence of Bandung Basin (Indonesia) Using GPS Survey Technique. Survey Review, 2006, 38, 397-405.                                                                                                                                     | 1.2 | 13        |
| 32 | Tidal inundation ("Robâ€) investigation using time series of high resolution satellite image data and<br>from institu measurements along northern coast of Java (Pantura). IOP Conference Series: Earth and<br>Environmental Science, 2017, 71, 012005. | 0.3 | 13        |
| 33 | On the acceleration of land subsidence rate in Semarang City as detected from GPS surveys. E3S Web of Conferences, 2019, 94, 04002.                                                                                                                     | 0.5 | 13        |
| 34 | Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE. Journal of<br>Geophysical Research: Solid Earth, 2017, 122, 2409-2430.                                                                                             | 3.4 | 12        |
| 35 | Insight look the subsidence impact to infrastructures in Jakarta and Semarang area; Key for adaptation and mitigation. MATEC Web of Conferences, 2018, 147, 08001.                                                                                      | 0.2 | 12        |
| 36 | Combined X- and L-band PSI analyses for assessment of land subsidence in Jakarta. Proceedings of SPIE, 2012, , .                                                                                                                                        | 0.8 | 11        |

| #  | Article                                                                                                                                                                                                             | IF               | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 37 | An evaluation of the possibility of tectonic triggering of the Sinabung eruption. Journal of<br>Volcanology and Geothermal Research, 2019, 382, 224-232.                                                            | 2.1              | 11            |
| 38 | Adaptation of â€~Early Climate Change Disaster' to the Northern Coast of Java Island Indonesia.<br>Engineering Journal, 2018, 22, 207-219.                                                                          | 1.0              | 11            |
| 39 | Adaptation and mitigation of land subsidence in Semarang. AIP Conference Proceedings, 2017, , .                                                                                                                     | 0.4              | 10            |
| 40 | Insight into the Correlation between Land Subsidence and the Floods in Regions of Indonesia. , 0, , .                                                                                                               |                  | 10            |
| 41 | On the Roles of Geospatial Information for Risk Assessment of Land Subsidence in Urban Areas of<br>Indonesia. Lecture Notes in Geoinformation and Cartography, 2013, , 277-288.                                     | 1.0              | 10            |
| 42 | Land Subsidence Characteristics in Bandung City, Indonesia as Revealed by Spaceborne Geodetic<br>Techniques and Hydrogeological Observations. Photogrammetric Engineering and Remote Sensing,<br>2013, 79, 639-652. | 0.6              | 9             |
| 43 | On the establishment and implementation of GPS CORS for cadastral surveying and mapping in<br>Indonesia. Survey Review, 2015, 47, 61-70.                                                                            | 1.2              | 9             |
| 44 | On the Construction of the Ambiguity Searching Space for On-the-Fly Ambiguity Resolution.<br>Navigation, Journal of the Institute of Navigation, 1993, 40, 321-338.                                                 | 2.8              | 8             |
| 45 | Analysis of Coastal Sedimentation Impact to Jakarta Giant Sea Wall Using PSI ALOS PALSAR. IEEE<br>Geoscience and Remote Sensing Letters, 2016, 13, 1472-1476.                                                       | 3.1              | 8             |
| 46 | Understanding the trigger for the LUSI mud volcano eruption from ground deformation signatures.<br>Geological Society Special Publication, 2017, 441, 199-212.                                                      | 1.3              | 8             |
| 47 | Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques. , 2005, , 561-566.                                                                                               |                  | 7             |
| 48 | Preliminary survey and performance of land subsidence in North Semarang Demak. AIP Conference<br>Proceedings, 2016, , .                                                                                             | 0.4              | 7             |
| 49 | Early pictures of global climate change impact to the coastal area (North West of Demak Central Java) Tj ETQq1                                                                                                      | l 0.78431<br>0.4 | 4 rgBT /Overl |
| 50 | Investigating the tectonic influence to the anthropogenic subsidence along northern coast of Java<br>Island Indonesia using GNSS data sets. E3S Web of Conferences, 2019, 94, 04005.                                | 0.5              | 7             |
| 51 | Remotes sensing capabilities on land subsidence and coastal water hazard and disaster studies. IOP<br>Conference Series: Earth and Environmental Science, 2020, 500, 012036.                                        | 0.3              | 7             |
| 52 | NUMERICAL MODELING OF THE 2006 JAVA TSUNAMI EARTHQUAKE. , 0, , 231-248.                                                                                                                                             |                  | 6             |
| 53 | Geodetic Datum of Indonesian Maritime Boundaries: Status and Problems. Marine Geodesy, 2005, 28, 291-304.                                                                                                           | 2.0              | 6             |
| 54 | Ground deformation of Papandayan volcano before, during, and after the 2002 eruption as detected by<br>GPS surveys. GPS Solutions, 2006, 10, 75-84.                                                                 | 4.3              | 6             |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Preliminary result of Indonesian strain map based on geodetic measurements. AIP Conference<br>Proceedings, 2016, , .                                                                             | 0.4 | 6         |
| 56 | Study the capabilities of RTK Multi GNSS under forest canopy in regions of Indonesia. E3S Web of Conferences, 2019, 94, 01021.                                                                   | 0.5 | 6         |
| 57 | Supershear shock front contribution to the tsunami from the 2018 <i>M</i> w 7.5 Palu, Indonesia earthquake. Geophysical Journal International, 2022, 230, 2089-2097.                             | 2.4 | 6         |
| 58 | Studying landslide displacements in the Ciloto area (Indonesia) using GPS surveys. Journal of Spatial<br>Science, 2007, 52, 55-63.                                                               | 1.5 | 5         |
| 59 | Land subsidence induced by agriculture activity in Bandung, West Java Indonesia. IOP Conference<br>Series: Earth and Environmental Science, 2019, 389, 012024.                                   | 0.3 | 5         |
| 60 | 3D modelling of Mt. Talaga Bodas Crater (Indonesia) by using terrestrial laser scanner for volcano<br>hazard mitigation. AIP Conference Proceedings, 2015, , .                                   | 0.4 | 4         |
| 61 | Velocity field from twenty-two years of combined GPS daily coordinate time series analysis. AIP<br>Conference Proceedings, 2016, , .                                                             | 0.4 | 4         |
| 62 | Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali, West Java<br>(Indonesia). AIP Conference Proceedings, 2017, , .                                     | 0.4 | 4         |
| 63 | Continuously operating GPS-based volcano deformation monitoring in Indonesia: the technical and logistical challenges. International Association of Geodesy Symposia, 2000, , 361-366.           | 0.4 | 4         |
| 64 | On the Development and Implementation of a Semi-Dynamic Datum for Indonesia. International<br>Association of Geodesy Symposia, 2015, , 91-99.                                                    | 0.4 | 3         |
| 65 | Preliminary deformation model for National Seismic Hazard map of Indonesia. AIP Conference<br>Proceedings, 2015, , .                                                                             | 0.4 | 3         |
| 66 | Strain Variation along Cimandiri Fault, West Java Based on Continuous and Campaign GPS Observation<br>From 2006-2016. IOP Conference Series: Earth and Environmental Science, 2018, 132, 012027. | 0.3 | 3         |
| 67 | Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia. IOP<br>Conference Series: Earth and Environmental Science, 2018, 149, 012070.                           | 0.3 | 3         |
| 68 | Post-Tsunami Land Administration Reconstruction in Aceh: Aspects, Status and Problems. Survey Review, 2011, 43, 439-450.                                                                         | 1.2 | 2         |
| 69 | Preliminary co-sesimic deformation model for Indonesia geospatial reference system 2013. AIP<br>Conference Proceedings, 2017, , .                                                                | 0.4 | 2         |
| 70 | Determining the initial time of anthropogenic subsidence in urban area of Indonesia. IOP Conference<br>Series: Earth and Environmental Science, 2019, 389, 012034.                               | 0.3 | 2         |
| 71 | WHY MANY VICTIMS: LESSONS FROM THE JULY 2006 SOUTH JAVA TSUNAMI EARTHQUAKE. , 0, , 249-263.                                                                                                      |     | 2         |
| 72 | Influence of groundwater level to slope displacement by geodetic method. AIP Conference<br>Proceedings, 2016, , .                                                                                | 0.4 | 1         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Application of A10 Absolute Gravimeter for Monitoring Land Subsidence in Jakarta, Indonesia.<br>International Association of Geodesy Symposia, 2016, , 127-134.                                                            | 0.4 | 1         |
| 74 | Newly velocity field of Sulawesi Island from GPS observation. AIP Conference Proceedings, 2017, , .                                                                                                                        | 0.4 | 1         |
| 75 | Rotation and strain rate of Sulawesi from geometrical velocity field. AIP Conference Proceedings, 2017, , .                                                                                                                | 0.4 | 1         |
| 76 | Investigating the tectonic subsidence on Java Island using GNSS GPS campaign and continuous. AIP Conference Proceedings, 2018, , .                                                                                         | 0.4 | 1         |
| 77 | Geodetic strain to study the deformation model of Indonesian semi dynamic datum 2013. AIP<br>Conference Proceedings, 2018, , .                                                                                             | 0.4 | 1         |
| 78 | Land subsidence characteristtics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. , 2013, , .                                                                                                  |     | 0         |
| 79 | On the use of terrestrial laser scanner for deformation analysis of the Talaga Bodas Crater West Java<br>(Indonesia). AIP Conference Proceedings, 2016, , .                                                                | 0.4 | Ο         |
| 80 | Implementation of M6.5 Pidie Jaya earthquake's deformation model for Indonesian geospatial reference<br>system 2013. AIP Conference Proceedings, 2018, , .                                                                 | 0.4 | 0         |
| 81 | The Effect of Highway Vibration to The Hills Slope Stability by an Integrated GPS-Vibration Data<br>Processing. E3S Web of Conferences, 2019, 94, 01017.                                                                   | 0.5 | Ο         |
| 82 | Assessment on topographic mapping using total station and terrestrial laser scanner technology<br>(case study: Kiara Payung area, Sumedang). IOP Conference Series: Earth and Environmental Science,<br>2019, 389, 012006. | 0.3 | 0         |
| 83 | Deformation Study of Papandayan Volcano using GPS Survey Method and Its Correlation with Seismic<br>Data Observation. ITB Journal of Engineering Science, 2006, 38, 123-146.                                               | 0.1 | Ο         |
| 84 | Development of Static Differential Method GNSS CORS UDIP for Monitoring Land Subsidence in Semarang Demak. Advanced Science Letters, 2017, 23, 2207-2210.                                                                  | 0.2 | 0         |
| 85 | Terrestrial Laser Scanner (TLS) Measurement in A Volcanic Area: Detection of Error Source and<br>Scanned Object Intensity. Indonesian Journal on Geoscience, 2020, 7, .                                                    | 0.3 | 0         |
| 86 | Volcano Deformation Monitoring in Indonesia: Status, Limitations and Prospects. , 2007, , 790-798.                                                                                                                         |     | 0         |
| 87 | GPS-Based Monitoring of Surface Displacements in the Mud Volcano Area, Sidoarjo, East Java.<br>International Association of Geodesy Symposia, 2009, 595-603                                                                | 0.4 | О         |