Dan Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683422/publications.pdf

Version: 2024-02-01

		840776	839539	
18	582	11	18	
papers	citations	h-index	g-index	
19	19	19	207	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Hybrid rayleigh–van der pol–duffing oscillator: Stability analysis and controller. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 244-268.	2.9	71
2	A fast estimation of the frequency property of the microelectromechanical system oscillator. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 160-166.	2.9	7
3	Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 1234-1257.	2.9	66
4	Macromolecular-scale electrospinning controlling inner topologic structure through a blowing air. Thermal Science, 2022, 26, 2663-2666.	1.1	3
5	Preparation of a Cu-BTC/PAN electrospun film with a good air filtration performance. Thermal Science, 2021, 25, 1469-1475.	1.1	3
6	Fractal Pull-in Stability Theory for Microelectromechanical Systems. Frontiers in Physics, 2021, 9, .	2.1	24
7	FRACTAL N/MEMS: FROM PULL-IN INSTABILITY TO PULL-IN STABILITY. Fractals, 2021, 29, 2150030.	3.7	90
8	High energy surface as a receptor in electrospinning: A good switch for hydrophobicity to hydrophilicity. Thermal Science, 2021, 25, 2205-2212.	1.1	11
9	Hierarchical aligned ZnO nanorods on surface of PVDF/Fe2O3 nanofibers by electrospinning in a magnetic field. Thermal Science, 2021, 25, 2399-2403.	1.1	5
10	A fractal micro-electromechanical system and its pull-in stability. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1380-1386.	2.9	53
11	From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification. Membranes, 2021, 11, 870.	3.0	4
12	Control of Macromolecule Chains Structure in a Nanofiber. Polymers, 2020, 12, 2305.	4.5	12
13	Electrospun Mussel-derived Silk Fibers. Recent Patents on Nanotechnology, 2020, 14, 14-20.	1.3	5
14	Strength of bubble walls and the Hall–Petch effect in bubble-spinning. Textile Reseach Journal, 2019, 89, 1340-1344.	2.2	41
15	Snail-based nanofibers. Materials Letters, 2018, 220, 5-7.	2.6	54
16	Macromolecule Orientation in Nanofibers. Nanomaterials, 2018, 8, 918.	4.1	33
17	Self-assembly of macromolecules in a long and narrow tube. Thermal Science, 2018, 22, 1659-1664.	1.1	55
18	What factors affect lotus effect?. Thermal Science, 2018, 22, 1737-1743.	1.1	45