Andreas Platis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6834148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Atmospheric Stability and Turbulence in Offshore Wind-Farm Wakes in the German Bight. Boundary-Layer Meteorology, 2022, 182, 441-469.	1.2	14
2	Turbulence above offshore wind farms measured by aircraft. Journal of Physics: Conference Series, 2022, 2265, 022065.	0.3	0
3	Evaluation of a simple analytical model for offshore wind farm wake recovery by in situ data and Weather Research and Forecasting simulations. Wind Energy, 2021, 24, 212-228.	1.9	15
4	A Two-Day Case Study: Comparison of Turbulence Data from an Unmanned Aircraft System with a Model Chain for Complex Terrain. Boundary-Layer Meteorology, 2021, 180, 53-78.	1.2	4
5	Unmanned Aircraft Systems. Springer Handbooks, 2021, , 1331-1349.	0.3	4
6	Validating CFD Predictions of Flow over an Escarpment Using Ground-Based and Airborne Measurement Devices. Energies, 2020, 13, 4688.	1.6	6
7	Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models. Wind Energy, 2020, 23, 1249-1265.	1.9	51
8	Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1). Geoscientific Model Development, 2020, 13, 249-268.	1.3	42
9	Long-range modifications of the wind field by offshore wind parks– results of the project WIPAFF. Meteorologische Zeitschrift, 2020, 29, 355-376.	0.5	30
10	Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chemistry and Physics, 2020, 20, 8551-8592.	1.9	26
11	InÂsitu airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight. Earth System Science Data, 2020, 12, 935-946.	3.7	16
12	The Multi-Purpose Airborne Sensor Carrier MASC-3 for Wind and Turbulence Measurements in the Atmospheric Boundary Layer. Sensors, 2019, 19, 2292.	2.1	33
13	A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer. Atmospheric Measurement Techniques, 2019, 12, 1581-1598.	1.2	17
14	First identification and quantification of detached-tip vortices behind a wind energy converter using fixed-wing unmanned aircraft system. Wind Energy Science, 2019, 4, 451-463.	1.2	12
15	First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 2018, 8, 2163.	1.6	124
16	Micrometeorological impacts of offshore wind farms as seen in observations and simulations. Environmental Research Letters, 2018, 13, 124012.	2.2	44
17	Airborne observations of newly formed boundary layer aerosol particles under cloudy conditions. Atmospheric Chemistry and Physics, 2018, 18, 8249-8264.	1.9	21
18	Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric Flow Models with Aircraft Measurements. Meteorologische Zeitschrift, 2018, 27, 401-415.	0.5	36

ANDREAS PLATIS

#	Article	IF	CITATIONS
19	Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft. Atmosphere, 2018, 9, 422.	1.0	36
20	Observations of the Temperature and Humidity Structure Parameter Over Heterogeneous Terrain by Airborne Measurements During the LITFASS-2003 Campaign. Boundary-Layer Meteorology, 2017, 165, 447-473.	1.2	6
21	Analysis of the influence of a lake on the lower convective boundary layer from airborne observations. Meteorologische Zeitschrift, 2017, 26, 161-180.	0.5	3
22	An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation. Boundary-Layer Meteorology, 2016, 158, 67-92.	1.2	66
23	On the Discrepancy in Simultaneous Observations of the Structure Parameter of Temperature Using Scintillometers and Unmanned Aircraft. Boundary-Layer Meteorology, 2016, 158, 257-283.	1.2	12
24	ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 2015, 8, 1627-1639.	1.2	84