Thomas Proft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6833761/publications.pdf

Version: 2024-02-01

92 5,017 32 papers citations h-index

93 93 93 4939 all docs citations times ranked citing authors

68

g-index

#	Article	IF	CITATIONS
1	<i>Galleria mellonella</i> infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 2016, 7, 214-229.	1.8	534
2	Pili in Gram-negative and Gram-positive bacteria $\hat{a} \in \text{``}$ structure, assembly and their role in disease. Cellular and Molecular Life Sciences, 2009, 66, 613-635.	2.4	425
3	The bacterial superantigen and superantigenâ€like proteins. Immunological Reviews, 2008, 225, 226-243.	2.8	415
4	Bacterial superantigens. Clinical and Experimental Immunology, 2003, 133, 299-306.	1.1	371
5	Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure. Science, 2007, 318, 1625-1628.	6.0	295
6	The Staphylococcal Superantigen-Like Protein 7 Binds IgA and Complement C5 and Inhibits IgA-FcαRI Binding and Serum Killing of Bacteria. Journal of Immunology, 2005, 174, 2926-2933.	0.4	237
7	Identification and Characterization of Novel Superantigens from Streptococcus pyogenes. Journal of Experimental Medicine, 1999, 189, 89-102.	4.2	184
8	<i>Galleria mellonella</i> larvae as an infection model for group A streptococcus. Virulence, 2013, 4, 419-428.	1.8	154
9	Superantigens – powerful modifiers of the immune system. Trends in Molecular Medicine, 2000, 6, 125-132.	2.6	147
10	Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnology Letters, 2010, 32, 1-10.	1.1	110
11	Streptococcal superantigens: categorization and clinical associations. Trends in Molecular Medicine, 2014, 20, 48-62.	3.5	97
12	Two Novel Superantigens Found in Both Group A and Group C Streptococcus. Infection and Immunity, 2003, 71, 1361-1369.	1.0	95
13	The Bacterial Superantigen Streptococcal Mitogenic Exotoxin Z Is the Major Immunoactive Agent of <i>Streptococcus pyogenes </i> Iournal of Immunology, 2002, 169, 2561-2569.	0.4	84
14	Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. Journal of Bacteriology, 1997, 179, 2668-2677.	1.0	82
15	Superantigens and Streptococcal Toxic Shock Syndrome. Emerging Infectious Diseases, 2003, 9, 1211-1218.	2.0	82
16	The Streptococcal Superantigen Smez Exhibits Wide Allelic Variation, Mosaic Structure, and Significant Antigenic Variation. Journal of Experimental Medicine, 2000, 191, 1765-1776.	4.2	78
17	The Three-dimensional Structure of a Superantigen-like Protein, SET3, from a Pathogenicity Island of the Staphylococcus aureus Genome. Journal of Biological Chemistry, 2002, 277, 32274-32281.	1.6	77
18	The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. Journal of Bacteriology, 1995, 177, 3370-3378.	1.0	74

#	Article	IF	Citations
19	Functional analysis of <i>Streptococcus pyogenes</i> nuclease A (SpnA), a novel group A streptococcal virulence factor. Molecular Microbiology, 2011, 79, 1629-1642.	1.2	70
20	Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 299, 157-168.	2.0	69
21	Identification and characterization of hitherto unknownMycoplasma pneumoniaeproteins. Molecular Microbiology, 1994, 13, 337-348.	1.2	64
22	Immobilization of proteins to biacore sensor chips using Staphylococcus aureus sortase A. Biotechnology Letters, 2008, 30, 1603-1607.	1.1	63
23	Crystal Structure of the Minor Pilin FctB Reveals Determinants of Group A Streptococcal Pilus Anchoring. Journal of Biological Chemistry, 2010, 285, 20381-20389.	1.6	61
24	Different Preparations of Intravenous Immunoglobulin Vary in Their Efficacy to Neutralize Streptococcal Superantigens: Implications for Treatment of Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 2006, 43, 743-746.	2.9	58
25	The Laminin-Binding Protein Lbp from Streptococcus pyogenes Is a Zinc Receptor. Journal of Bacteriology, 2009, 191, 5814-5823.	1.0	56
26	Immunological and Biochemical Characterization of Streptococcal Pyrogenic Exotoxins I and J (SPE-I) Tj ETQq0 0	0 rgBT /C)verlock 10 Tf
27	Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly. PLoS ONE, 2011, 6, e15969.	1.1	44
28	Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine, 2014, 32, 3713-3720.	1.7	44
29	Superantigens in human disease. Journal of Clinical Immunology, 1999, 19, 149-157.	2.0	43
30	M-Protein Analysis of Streptococcus pyogenes Isolates Associated with Acute Rheumatic Fever in New Zealand. Journal of Clinical Microbiology, 2015, 53, 3618-3620.	1.8	43
31	The P200 protein of Mycoplasma pneumoniae shows common features with the cytadherence-associated proteins HMW1 and HMW3. Gene, 1996, 171, 79-82.	1.0	39
32	Superantigens: Just Like Peptides Only Different. Journal of Experimental Medicine, 1998, 187, 819-821.	4.2	39
33	Sequence analysis and characterization of the hmw gene cluster of Mycoplasma pneumoniae. Gene, 1996, 171, 19-25.	1.0	35
34	Streptococcal Superantigens., 2007, 93, 1-23.		33
35	Streptococcal $5\hat{a}$ e ² -Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion. Journal of Biological Chemistry, 2015, 290, 31126-31137.	1.6	33
36	Structural Conservation, Variability, and Immunogenicity of the T6 Backbone Pilin of Serotype M6 Streptococcus pyogenes. Infection and Immunity, 2014, 82, 2949-2957.	1.0	32

#	Article	IF	CITATIONS
37	Mucosal vaccination with pili from Group A Streptococcus expressed on Lactococcus lactis generates protective immune responses. Scientific Reports, 2017, 7, 7174.	1.6	32
38	Increasing incidence of invasive group A streptococcus disease in New Zealand, 2002–2012: A national population-based study. Journal of Infection, 2015, 70, 127-134.	1.7	31
39	Toxin–antitoxin-stabilized reporter plasmids for biophotonic imaging of Group A streptococcus. Applied Microbiology and Biotechnology, 2013, 97, 9737-9745.	1.7	29
40	The Group A Streptococcus serotype <scp>M</scp> 2 pilus plays a role in host cell adhesion and immune evasion. Molecular Microbiology, 2017, 103, 282-298.	1.2	28
41	Pyrogenicity and Cytokine-Inducing Properties of Streptococcus pyogenes Superantigens: Comparative Study of Streptococcal Mitogenic Exotoxin Z and Pyrogenic Exotoxin A. Infection and Immunity, 2001, 69, 4141-4145.	1.0	27
42	Streptococcal Mitogenic Exotoxin, SmeZ, Is the Most Susceptible M1T1 Streptococcal Superantigen to Degradation by the Streptococcal Cysteine Protease, SpeB. Journal of Biological Chemistry, 2006, 281, 35281-35288.	1.6	27
43	Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Frontiers in Microbiology, 2016, 7, 1119.	1.5	26
44	Comparison of firefly luciferase and NanoLuc luciferase for biophotonic labeling of group A Streptococcus. Biotechnology Letters, 2014, 36, 829-834.	1.1	25
45	Survey of the bp/tee genes from clinical group A streptococcus isolates in New Zealand – implications for vaccine development. Journal of Medical Microbiology, 2014, 63, 1670-1678.	0.7	24
46	Protein adhesins as vaccine antigens for Group A Streptococcus. Pathogens and Disease, 2018, 76, .	0.8	24
47	Isopeptide bonds in bacterial pili and their characterization by Xâ€ray crystallography and mass spectrometry. Biopolymers, 2009, 91, 1126-1134.	1.2	22
48	Induction of interleukinâ€8 in human neutrophils after MHC class II crossâ€linking with superantigens. Journal of Leukocyte Biology, 2001, 70, 80-86.	1.5	22
49	A multivalent T-antigen-based vaccine for Group A Streptococcus. Scientific Reports, 2021, 11, 4353.	1.6	20
50	Crystallographic and Mutational Data Show That the Streptococcal Pyrogenic Exotoxin J Can Use a Common Binding Surface for T-cell Receptor Binding and Dimerization. Journal of Biological Chemistry, 2004, 279, 38571-38576.	1.6	18
51	PilVax – a novel peptide delivery platform for the development of mucosal vaccines. Scientific Reports, 2018, 8, 2555.	1.6	17
52	The use of sortase-mediated ligation for the immobilisation of bacterial adhesins onto fluorescence-labelled microspheres: a novel approach to analyse bacterial adhesion to host cells. Biotechnology Letters, 2010, 32, 1713-1718.	1.1	16
53	Involvement of Streptococcal Mitogenic Exotoxin Z in Streptococcal Toxic Shock Syndrome. Journal of Clinical Microbiology, 2005, 43, 3570-3573.	1.8	15
54	Structure and Activity of Streptococcus pyogenes SipA: A Signal Peptidase-Like Protein Essential for Pilus Polymerisation. PLoS ONE, 2014, 9, e99135.	1.1	14

#	Article	IF	Citations
55	Group A <i>Streptococcus</i> T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infection and Immunity, 2019, 87, .	1.0	14
56	Artificial Urine for Teaching Urinalysis Concepts and Diagnosis of Urinary Tract Infection in the Medical Microbiology Laboratory. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	13
57	Cell wallâ€anchored 5′â€nucleotidases in Gramâ€positive cocci. Molecular Microbiology, 2020, 113, 691-698.	1.2	12
58	Variations in the protective immune response against streptococcal superantigens in populations of different ethnicity. Medical Microbiology and Immunology, 2006, 195, 37-43.	2.6	11
59	The novel Group A Streptococcus antigen SpnA combined with bead-based immunoassay technology improves streptococcal serology for the diagnosis of acute rheumatic fever. Journal of Infection, 2018, 76, 361-368.	1.7	11
60	Streptococcus pyogenes nuclease A (SpnA) mediated virulence does not exclusively depend on nuclease activity. Journal of Microbiology, Immunology and Infection, 2020, 53, 42-48.	1.5	11
61	The Use of Galleria mellonella (Wax Moth) as an Infection Model for Group A Streptococcus. Methods in Molecular Biology, 2020, 2136, 279-286.	0.4	11
62	Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms, 2020, 8, 1361.	1.6	10
63	Development and Evaluation of a New Triplex Immunoassay That Detects Group A <i>Streptococcus</i> Antibodies for the Diagnosis of Rheumatic Fever. Journal of Clinical Microbiology, 2020, 58, .	1.8	10
64	A potential role for staphylococcal and streptococcal superantigens in driving skewing of TCR \hat{V}^2 subsets in tonsillar hyperplasia. Medical Microbiology and Immunology, 2017, 206, 337-346.	2.6	9
65	Impact of Superantigen-Producing Bacteria on T Cells from Tonsillar Hyperplasia. Pathogens, 2019, 8, 90.	1.2	9
66	Complement evasion factor (CEF), a novel immune evasion factor of <i>Streptococcus pyogenes</i> Virulence, 2022, 13, 225-240.	1.8	7
67	The ability of Group A streptococcus to adhere to immortalized human skin versus throat cell lines does not reflect their predicted tissue tropism. Clinical Microbiology and Infection, 2017, 23, 677.e1-677.e3.	2.8	6
68	Intranasal immunization with Ag85B peptide 25 displayed on <i>Lactococcuslactis</i> using the PilVax platform induces antigenâ€specific B―and T ell responses. Immunology and Cell Biology, 2021, 99, 767-781.	1.0	6
69	Preformulation studies of thymopentin: analytical method development, physicochemical properties, kinetic degradation investigations and formulation perspective. Drug Development and Industrial Pharmacy, 2021, 47, 1680-1692.	0.9	6
70	The Cytokine Response to Streptococcal Superantigens Varies Between Individual Toxins and Between Individuals: Implications for the Pathogenesis of Group A Streptococcal Diseases. Journal of Interferon and Cytokine Research, 2007, 27, 553-558.	0.5	5
71	Vaccination with Streptococcus pyogenes nuclease A stimulates a high antibody response but no protective immunity in a mouse model of infection. Medical Microbiology and Immunology, 2015, 204, 185-191.	2.6	5
72	Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5′-nucleotidase A (S5nA) found in Streptococcus iniae. Journal of Biochemistry, 2018, 164, 165-171.	0.9	5

#	Article	IF	CITATIONS
73	Purification, crystallization and preliminary crystallographic analysis of <i> Streptococcus pyogenes < /i > laminin-binding protein Lbp. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 141-143.</i>	0.7	4
74	Purification, crystallization and preliminary crystallographic analysis of the minor pilin FctB fromStreptococcus pyogenes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 177-179.	0.7	3
75	Bacterial superantigens and superantigen-like toxins. , 2015, , 911-974.		3
76	Development of a high-throughput opsonophagocytic assay for the determination of functional antibody activity against Streptococcus pyogenes using bioluminescence. Journal of Microbiological Methods, 2017, 134, 58-61.	0.7	3
77	Pilus proteins from <i>Streptococcus pyogenes</i> stimulate innate immune responses through Tollâ€like receptor 2. Immunology and Cell Biology, 2022, 100, 174-185.	1.0	3
78	Stabilized plasmid-based system for bioluminescent labeling of multiple streptococcal species. Biotechnology Letters, 2016, 38, 139-143.	1.1	2
79	Assays to Analyze Adhesion of Group A Streptococcus to Host Cells. Methods in Molecular Biology, 2020, 2136, 271-278.	0.4	2
80	A Mouse Nasopharyngeal Colonization Model for Group A Streptococcus. Methods in Molecular Biology, 2020, 2136, 303-308.	0.4	1
81	Generation of Bioluminescent Group A Streptococcus for Biophotonic Imaging. Methods in Molecular Biology, 2020, 2136, 71-77.	0.4	1
82	Using Lactococcus lactis as Surrogate Organism to Study Group A Streptococcus Surface Proteins. Methods in Molecular Biology, 2020, 2136, 155-162.	0.4	1
83	Functional Characterisation of Two Novel Deacetylases from Streptococcus pyogenes. Microbiology Research, 2022, 13, 323-331.	0.8	1
84	Involvement of streptococcal superantigens in streptococcal toxic shock syndrome. International Congress Series, 2006, 1289, 125-128.	0.2	0
85	Isopeptide bonds stabilize Gram-positive bacterial pilus structure and assembly. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C376-C377.	0.3	O
86	Structural studies on novel streptococcal virulence factors. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c193-c194.	0.3	0
87	Streptococcal superantigenic toxins. , 2006, , 844-861.		0
88	Crystal structure of the laminin-binding protein Lpb of Streptococcus pyogenes. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C639-C639.	0.3	0
89	Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 1-9.	0.5	0
90	Incorporation of the basal pilin FctB into the pilus of Streptococcus pyogenes. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s33-s34.	0.3	0

#	Article	IF	CITATIONS
91	The Streptococcal Superantigens. , 0, , 1-20.		O
92	PilVax: A Novel Platform for the Development of Mucosal Vaccines. Methods in Molecular Biology, 2022, 2412, 399-410.	0.4	0