
## Milena M Awad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6833704/publications.pdf Version: 2024-02-01



MILENA M AWAD

| #  | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Towards an understanding of the role of <i>Clostridium perfringens</i> toxins in human and animal disease. Future Microbiology, 2014, 9, 361-377.                                                                                                                                                                | 2.0 | 328       |
| 2  | Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens.<br>Genome Research, 2006, 16, 1031-1040.                                                                                                                                                                     | 5.5 | 281       |
| 3  | Alpha-Toxin of Clostridium perfringens Is Not an Essential Virulence Factor in Necrotic Enteritis in<br>Chickens. Infection and Immunity, 2006, 74, 6496-6500.                                                                                                                                                   | 2.2 | 226       |
| 4  | Identification and molecular analysis of a locus that regulates extracellular toxin production in<br>Clostridium perfringens. Molecular Microbiology, 1994, 12, 761-777.                                                                                                                                         | 2.5 | 187       |
| 5  | Synergistic Effects of Alpha-Toxin and Perfringolysin O in Clostridium perfringens -Mediated Gas<br>Gangrene. Infection and Immunity, 2001, 69, 7904-7910.                                                                                                                                                       | 2.2 | 173       |
| 6  | The α-toxin ofClostridium septicumis essential for virulence. Molecular Microbiology, 2005, 57,<br>1357-1366.                                                                                                                                                                                                    | 2.5 | 120       |
| 7  | <i>Clostridium difficile</i> virulence factors: Insights into an anaerobic spore-forming pathogen. Gut<br>Microbes, 2014, 5, 579-593.                                                                                                                                                                            | 9.8 | 110       |
| 8  | Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic<br>Resistance. Genes, 2015, 6, 1347-1360.                                                                                                                                                                         | 2.4 | 82        |
| 9  | Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens<br>and Clostridium septicum. PLoS Pathogens, 2008, 4, e1000045.                                                                                                                                              | 4.7 | 78        |
| 10 | Use of Genetically Manipulated Strains of <i>Clostridium perfringens</i> Reveals that Both<br>Alpha-Toxin and Theta-Toxin Are Required for Vascular Leukostasis To Occur in Experimental Gas<br>Gangrene. Infection and Immunity, 1999, 67, 4902-4907.                                                           | 2.2 | 78        |
| 11 | TcsL Is an Essential Virulence Factor in Clostridium sordellii ATCC 9714. Infection and Immunity, 2011, 79, 1025-1032.                                                                                                                                                                                           | 2.2 | 51        |
| 12 | The NanI and NanJ Sialidases of <i>Clostridium perfringens</i> Are Not Essential for Virulence.<br>Infection and Immunity, 2009, 77, 4421-4428.                                                                                                                                                                  | 2.2 | 45        |
| 13 | Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genomics, 2015, 16, 392.                                                                                                                                                                      | 2.8 | 39        |
| 14 | Construction and virulence testing of a collagenase mutant of Clostridium perfringens. Microbial<br>Pathogenesis, 2000, 28, 107-117.                                                                                                                                                                             | 2.9 | 38        |
| 15 | Antibiotic resistance, virulence factors and genetics of Clostridium sordellii. Research in<br>Microbiology, 2015, 166, 368-374.                                                                                                                                                                                 | 2.1 | 36        |
| 16 | Comparing the identification of Clostridium spp. by two Matrix-Assisted Laser Desorption<br>lonization-Time of Flight (MALDI-TOF) mass spectrometry platforms to 16S rRNA PCR sequencing as a<br>reference standard: A detailed analysis of age of culture and sample preparation. Anaerobe, 2014, 30,<br>85-89. | 2.1 | 34        |
| 17 | Functional Analysis of the VirSR Phosphorelay from Clostridium perfringens. PLoS ONE, 2009, 4, e5849.                                                                                                                                                                                                            | 2.5 | 31        |
| 18 | Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms.<br>International Journal of Medical Microbiology, 2014, 304, 1147-1159.                                                                                                                                             | 3.6 | 31        |

Milena M Awad

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Isolation of α-toxin, Î,-toxin and κ-toxin mutants ofClostridium perfringensby Tn916mutagenesis.<br>Microbial Pathogenesis, 1997, 22, 275-284.                                                                                            | 2.9  | 30        |
| 20 | Functional analysis of an feoB mutant in Clostridium perfringens strain 13. Anaerobe, 2016, 41, 10-17.                                                                                                                                    | 2.1  | 27        |
| 21 | Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection. Nature Microbiology, 2019, 4, 2237-2245.                                                                                     | 13.3 | 27        |
| 22 | Paeniclostridium (Clostridium) sordellii–associated enterocolitis in 7 horses. Journal of Veterinary<br>Diagnostic Investigation, 2020, 32, 239-245.                                                                                      | 1.1  | 26        |
| 23 | The Level of Expression of $\hat{I}_{\pm}$ -toxin by Different Strains ofClostridium perfringensis Dependent on Differences in Promoter Structure and Genetic Background. Anaerobe, 1996, 2, 365-371.                                     | 2.1  | 24        |
| 24 | The FxRxHrS Motif: A Conserved Region Essential for DNA Binding of the VirR Response Regulator from Clostridium perfringens. Journal of Molecular Biology, 2002, 322, 997-1011.                                                           | 4.2  | 24        |
| 25 | The Pore-Forming α-Toxin from Clostridium septicum Activates the MAPK Pathway in a<br>Ras-c-Raf-Dependent and Independent Manner. Toxins, 2015, 7, 516-534.                                                                               | 3.4  | 22        |
| 26 | Necrotic Enteritis in Chickens Associated withClostridium sordellii. Avian Diseases, 2015, 59, 447-451.                                                                                                                                   | 1.0  | 20        |
| 27 | Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile. Infection and Immunity, 2019, 87, .                                                                                                                                 | 2.2  | 20        |
| 28 | Tranexamic Acid Influences the Immune Response, but not Bacterial Clearance in a Model of<br>Post-Traumatic Brain Injury Pneumonia. Journal of Neurotrauma, 2019, 36, 3297-3308.                                                          | 3.4  | 20        |
| 29 | pCP13, a representative of a new family of conjugative toxin plasmids in Clostridium perfringens.<br>Plasmid, 2019, 102, 37-45.                                                                                                           | 1.4  | 17        |
| 30 | Novel Use of Tryptose Sulfite Cycloserine Egg Yolk Agar for Isolation of <i>Clostridium<br/>perfringens</i> during an Outbreak of Necrotizing Enterocolitis in a Neonatal Unit. Journal of<br>Clinical Microbiology, 2010, 48, 4263-4265. | 3.9  | 16        |
| 31 | Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and<br>Environmental Origin and Comparison to Clostridium difficile Spores. MSphere, 2017, 2, .                                                     | 2.9  | 16        |
| 32 | Clostridium sordellii Pathogenicity Locus Plasmid pCS1-1 Encodes a Novel Clostridial Conjugation Locus. MBio, 2018, 9, .                                                                                                                  | 4.1  | 16        |
| 33 | TcdB or not TcdB: a tale of twoClostridium difficiletoxins. Future Microbiology, 2011, 6, 121-123.                                                                                                                                        | 2.0  | 15        |
| 34 | The Cysteine Protease α-Clostripain is Not Essential for the Pathogenesis of Clostridium perfringens-Mediated Myonecrosis. PLoS ONE, 2011, 6, e22762.                                                                                     | 2.5  | 15        |
| 35 | Chromosome Segregation and Peptidoglycan Remodeling Are Coordinated at a Highly Stabilized Septal<br>Pore to Maintain Bacterial Spore Development. Developmental Cell, 2021, 56, 36-51.e5.                                                | 7.0  | 13        |
| 36 | The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii. Toxins, 2016, 8,<br>189.                                                                                                                             | 3.4  | 12        |

MILENA M AWAD

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | <i>Clostridium septicum</i> α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins. Science Immunology, 2022, 7, .                                                                           | 11.9 | 12        |
| 38 | Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathogens, 2018, 14, e1007004.                              | 4.7  | 11        |
| 39 | Perfringolysin O Expression in Clostridium perfringens Is Independent of the Upstream pfoR Gene.<br>Journal of Bacteriology, 2002, 184, 2034-2038.                                                               | 2.2  | 8         |
| 40 | Utility of the Clostridial Site-Specific Recombinase TnpX To Clone Toxic-Product-Encoding Genes and<br>Selectively Remove Genomic DNA Fragments. Applied and Environmental Microbiology, 2014, 80,<br>3597-3603. | 3.1  | 8         |
| 41 | The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS ONE, 2016, 11, e0162981.                                                                                                          | 2.5  | 8         |
| 42 | Opioid Analgesics Stop the Development of Clostridial Gas Gangrene. Journal of Infectious Diseases, 2014, 210, 483-492.                                                                                          | 4.0  | 7         |
| 43 | Human Plasminogen Exacerbates Clostridioides difficile Enteric Disease and Alters the Spore Surface.<br>Gastroenterology, 2020, 159, 1431-1443.e6.                                                               | 1.3  | 7         |
| 44 | Paeniclostridium sordellii and Clostridioides difficile encode similar and clinically relevant tetracycline resistance loci in diverse genomic locations. BMC Microbiology, 2019, 19, 53.                        | 3.3  | 5         |
| 45 | A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS<br>Genetics, 2020, 16, e1009246.                                                                              | 3.5  | 5         |
| 46 | A Highly Specific Holin-Mediated Mechanism Facilitates the Secretion of Lethal Toxin TcsL in<br>Paeniclostridium sordellii. Toxins, 2022, 14, 124.                                                               | 3.4  | 5         |