Shuqian Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6833108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of ionic liquids as â€~green' solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005, 80, 1089-1096.	3.2	780
2	Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 2009, 139, 47-54.	3.8	423
3	Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Advances, 2014, 4, 10586.	3.6	151
4	Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technology, 2017, 223, 20-26.	9.6	117
5	The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydrate Polymers, 2012, 87, 2019-2023.	10.2	100
6	A group contribution method to estimate the densities of ionic liquids. Journal of Chemical Thermodynamics, 2010, 42, 852-855.	2.0	63
7	Vapor–Liquid Equilibrium of N-Formylmorpholine with Toluene and Xylene at 101.33 kPa. Journal of Chemical & Engineering Data, 2008, 53, 252-255.	1.9	60
8	Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure–activity relationship method. Journal of Hazardous Materials, 2015, 286, 410-415.	12.4	46
9	Group Contribution Method for Predicting Melting Points of Imidazolium and Benzimidazolium Ionic Liquids. Industrial & Engineering Chemistry Research, 2009, 48, 2212-2217.	3.7	42
10	Predicting Toxicity of Ionic Liquids in Acetylcholinesterase Enzyme by the Quantitative Structure–Activity Relationship Method Using Topological Indexes. Journal of Chemical & Engineering Data, 2012, 57, 2252-2257.	1.9	41
11	Predicting the Toxicity of Ionic Liquids in Leukemia Rat Cell Line by the Quantitative Structure–Activity Relationship Method Using Topological Indexes. Industrial & Engineering Chemistry Research, 2012, 51, 13897-13901.	3.7	40
12	Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite. Bioresource Technology, 2016, 218, 615-622.	9.6	40
13	Predicting the Decomposition Temperature of Ionic Liquids by the Quantitative Structure–Property Relationship Method Using a New Topological Index. Journal of Chemical & Engineering Data, 2012, 57, 805-810.	1.9	38
14	Predicting the melting points of ionic liquids by the Quantitative Structure Property Relationship method using a topological index. Journal of Chemical Thermodynamics, 2013, 62, 196-200.	2.0	33
15	Upgrading fast pyrolysis oil: Solvent–anti-solvent extraction and blending with diesel. Energy Conversion and Management, 2016, 110, 378-385.	9.2	33
16	Application of Topological Index in Predicting Ionic Liquids Densities by the Quantitative Structure Property Relationship Method. Journal of Chemical & Engineering Data, 2015, 60, 734-739.	1.9	30
17	QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes. Chemosphere, 2018, 195, 831-838.	8.2	29
18	(Liquid+liquid) equilibria for the ternary system of (N-formylmorpholine+ethylbenzene+2,2,4-trimethylpentane) at temperatures (303.15, 313.15, and 323.15) K. Fluid Phase Equilibria, 2012, 328, 25-30.	2.5	28

Shuqian Xia

#	Article	IF	CITATIONS
19	Predicting the surface tensions of ionic liquids by the quantitative structure property relationship method using a topological index. Chemical Engineering Science, 2013, 101, 266-270.	3.8	28
20	Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation. Fuel, 2022, 310, 122270.	6.4	27
21	Position Group Contribution Method for the Prediction of Critical Temperatures of Organic Compounds. Journal of Chemical & Engineering Data, 2008, 53, 1103-1109.	1.9	26
22	Molecular Design of the Amphiphilic Polymer as a Viscosity Reducer for Heavy Crude Oil: From Mesoscopic to Atomic Scale. Energy & Fuels, 2021, 35, 1152-1164.	5.1	25
23	Isobaric Vapor–Liquid Equilibrium for the Binary System (Ethane-1,2-diol + Butan-1,2-diol) at (20, 30, and) Tj	ETQq1,10	784314 rgB⊺ 24
24	Quantitative Structure–Activity Relationship for High Affinity 5-HT _{1A} Receptor Ligands Based on Norm Indexes. Journal of Physical Chemistry B, 2015, 119, 15561-15567.	2.6	24
25	A review of nanomaterials as viscosity reducer for heavy oil. Journal of Dispersion Science and Technology, 2022, 43, 1271-1282.	2.4	24
26	Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE)+alcohol and MTBE+alkane. Journal of Chemical Thermodynamics, 2013, 62, 111-117.	2.0	23
27	Stability evaluation of fast pyrolysis oil from rice straw. Chemical Engineering Science, 2015, 135, 258-265.	3.8	23
28	Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives. Journal of Chemical Thermodynamics, 2014, 74, 161-168.	2.0	22
29	Description of the Thermal Conductivity λ(<i>T</i> , <i>P</i>) of Ionic Liquids Using the Structure–Property Relationship Method. Journal of Chemical & Engineering Data, 2017, 62, 2466-2472.	1.9	22
30	QSPR models for the properties of ionic liquids at variable temperatures based on norm descriptors. Chemical Engineering Science, 2020, 217, 115540.	3.8	22
31	Emulsifying stability and viscosity reduction for heavy crude oil in surfactant-polymer composite system. Journal of Molecular Liquids, 2022, 362, 119713.	4.9	22
32	Quantitative structure–toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes. Chemosphere, 2014, 108, 383-387.	8.2	21
33	QSAR models for describing the toxicological effects of ILs against Candida albicans based on norm indexes. Chemosphere, 2018, 201, 417-424.	8.2	21
34	Effect of zeolite solid acids on the in situ hydrogenation of bio-derived phenol. Catalysis Communications, 2017, 89, 111-116.	3.3	18
35	Experimental and computational study on the compatibility of biodiesel/diesel/methanol blended fuel. Fuel, 2016, 173, 52-59.	6.4	15
36	Measurement and correlation of the interfacial tension for paraffinÂ+ÂCO 2 and (CO 2 +N 2) mixture gas at elevated temperatures and pressures. Fluid Phase Equilibria, 2017, 439, 18-23.	2.5	15

SHUQIAN XIA

#	Article	IF	CITATIONS
37	Pyrolysis oil polymerization of water-soluble fraction during accelerated aging. Fuel, 2018, 230, 368-375.	6.4	15
38	Predicting the glass transition temperature of ionic liquids by the quantitative structure property relationship method using a topological index. Fluid Phase Equilibria, 2013, 358, 166-171.	2.5	14
39	Evaluating the properties of ionic liquid at variable temperatures and pressures by quantitative structure–property relationship (QSPR). Chemical Engineering Science, 2021, 231, 116326.	3.8	14
40	lsobaric (vapour+liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil. Journal of Chemical Thermodynamics, 2015, 87, 141-146.	2.0	13
41	Experiment and correlations for CO ₂ –oil minimum miscibility pressure in pure and impure CO ₂ streams. RSC Advances, 2014, 4, 63824-63830.	3.6	12
42	Measurement and correlation of ternary vapor-liquid equilibria for methanolÂ+ glycerolÂ+ fatty acid methyl ester (methyl laurate, methyl myristate, methyl palmitate) systems at elevated temperatures and pressures. Fluid Phase Equilibria, 2016, 425, 15-20.	2.5	12
43	Experiment and correlation of the equilibrium interfacial tension for paraffin + CO 2 modified with ethanol. Journal of Chemical Thermodynamics, 2018, 116, 206-212.	2.0	12
44	Stabilization of fast pyrolysis liquids from biomass by catalytic hydrotreatment using Raney nickel "type―catalysts. Fuel Processing Technology, 2021, 219, 106846.	7.2	12
45	Fabrication of a NiFe Alloy Oxide Catalyst via Surface Reconstruction for Selective Hydrodeoxygenation of Fatty Acid to Fatty Alcohol. ACS Sustainable Chemistry and Engineering, 2021, 9, 15027-15041.	6.7	12
46	Isobaric vapor–liquid equilibrium for four binary systems of thiophene. Fluid Phase Equilibria, 2012, 315, 84-90.	2.5	11
47	Research progress and development trend of heavy oil emulsifying viscosity reducer: a review. Petroleum Science and Technology, 2021, 39, 550-563.	1.5	11
48	Hydrodeoxygenation of aliphatic acid over NiFe intermetallic compounds: Insights into the mechanism via model compound study. Fuel, 2021, 305, 121545.	6.4	11
49	(Liquid+liquid) equilibrium for binary systems of N-formylmorpholine with alkanes. Journal of Chemical Thermodynamics, 2012, 47, 228-233.	2.0	10
50	Liquid–liquid equilibrium data for binary systems containing o-dichlorobenzene and nitrobenzene. Fluid Phase Equilibria, 2015, 385, 175-181.	2.5	9
51	Norm index in QSTR work for predicting toxicity of ionic liquids on Vibrio fischeri. Ecotoxicology and Environmental Safety, 2020, 205, 111187.	6.0	8
52	Isobaric (vapour+liquid) equilibria for three binary systems (toluene+anisole, n-butylbenzene+anisole,) Tj ETQq0	0 0 rgBT /	Overlock 10 T
	Liquid phase catalytic hydrogenation of furfural in variable solvent media. Transactions of Tianiin		

Shuqian Xia

#	Article	IF	CITATIONS
55	Densities and Viscosities of 1-butyl-3-methylimidazolium Hexafluorophosphate [bmim][PF6] + CO2 Binary System: Determination and Correlation. Chinese Journal of Chemical Engineering, 2013, 21, 1284-1290.	3.5	6
56	The solubility of CO2 in (hexaneÂ+Âcyclohexane) and (cyclopentaneÂ+Âethylbenzene) and (tolueneÂ+Âundecane) systems at high pressures. Journal of Chemical Thermodynamics, 2021, 154, 106324.	2.0	6
57	Isobaric vapor–liquid equilibria and distillation process design for separating ketones in biomass pyrolysis oil. Journal of Chemical Thermodynamics, 2022, 164, 106622.	2.0	6
58	Liquid–Liquid Equilibrium for the Ternary System of Methyl Laurate/Methyl Myristate + Ethanol + Glycerol at 318.15 and 333.15 K. Journal of Chemical & Engineering Data, 2016, 61, 1868-1872.	1.9	5
59	Estimation and Correlation of Phase Equilibrium of CO2–Hydrocarbon Systems with PRMHV2-UNIFAC and PRMHV2-NRTL Models. Journal of Chemical & Engineering Data, 2020, 65, 655-663.	1.9	5
60	lsobaric vapor–liquid equilibrium for the three binary systems of C14–C16 n-alkane+methyl myristate at 5.00kPa. Fluid Phase Equilibria, 2016, 408, 47-51.	2.5	4
61	Methyl lactate production from levoglucosan by using Snâ€Beta and Hâ€Beta catalysts. Journal of Chemical Technology and Biotechnology, 2020, 95, 798-805.	3.2	4
62	Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study. Catalysts, 2020, 10, 402.	3.5	4
63	Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil. Chinese Journal of Chemical Engineering, 2022, 45, 58-67.	3.5	4
64	Experiment and model for solubility of CO2 in alkanes with ethyl acetate as cosolvent. Journal of Chemical Thermodynamics, 2022, 168, 106741.	2.0	4
65	Isobaric vapor–liquid equilibrium for systems containing sulfur compounds. Fluid Phase Equilibria, 2013, 353, 87-92.	2.5	3
66	Isobaric Vapor–Liquid Equilibria of Binary Systems Containing Cyclohexane for the Separation of Phenolic Compounds from Biomass Fast Pyrolysis Oils. Journal of Chemical & Engineering Data, 2021, 66, 2374-2382.	1.9	3
67	Reply to "Comments on â€~Isobaric (vapour + liquid) equilibria for three binary systems (toluene +) Tj ETQq1 383, 193-196.	1 0.78431 2.5	.4 rgBT /Ovei 2
68	Ternary liquid-liquid equilibrium for systems of fatty acid methyl ester(methyl palmitate/methyl) Tj ETQq0 0 0 rgl 392-399.	3T /Overloc 6.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
69	Mechanistic effects of solvent systems on the Ni–Sn-catalyzed hydrodeoxygenation of lignin derivatives to none-oxygenates. Catalysis Science and Technology. 2022. 12. 154-166.	4.1	2