
Valentin A Sharnin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial structure, thermodynamics and kinetics of formation of hydrazones derived from pyridoxal 5â€2-phosphate and 2-furoic, thiophene-2-carboxylic hydrazides in solution. Journal of Molecular Liquids, 2019, 283, 825-833.	4.9	31
2	Calorimetric investigation of the complex formation reaction of 18-crown-6 ether with d,l-alanine in water–ethanol mixtures. Journal of Thermal Analysis and Calorimetry, 2013, 112, 983-989.	3.6	19
3	Thermodynamics of complex formation in mixed solvents K and ΔH for the formation reaction of [Gly18C6] at 298.15ÂK. Journal of Thermal Analysis and Calorimetry, 2009, 97, 811-816.	3.6	18
4	Stability of Hâ€complexes of nicotinamide nitrogen heteroatom with water and ethanol in mixed solvents by ¹³ C NMR probing. Magnetic Resonance in Chemistry, 2013, 51, 193-198.	1.9	18
5	Thermodynamics of complex formation between hydroxypropyl-β-cyclodextrin and quercetin in water–ethanol solvents at T = 298.15ÂK. Journal of Thermal Analysis and Calorimetry, 2019, 138, 41	7-424.	18
6	The influence of the composition of an aqueous-acetone solvent on the thermodynamic characteristics of complex formation of 18-crown-6 ether with glycine. Russian Journal of Physical Chemistry A, 2011, 85, 948-951.	0.6	17
7	The influence of water–ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and I-phenylalanine. Chemical Physics Letters, 2012, 543, 155-158.	2.6	16
8	Influence of regioisomerism on stability, formation kinetics and ascorbate oxidation preventive properties of Schiff bases derived from pyridinecarboxylic acids hydrazides and pyridoxal 5′-phosphate. Journal of Molecular Liquids, 2017, 242, 1148-1155.	4.9	16
9	Effect of solvation on the thermodynamics of the formation of molecular complexes of 18-crown-6 ether with glycine in water-dimethylsulfoxide solutions. Russian Journal of Physical Chemistry A, 2011, 85, 1898-1902.	0.6	15
10	Comment on the frequently used method of the metal complex-DNA binding constant determination from UV–Vis data. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 160-164.	3.9	15
11	Molecular complex formation between l-phenylalanine and 18-crown-6 in H2O–DMSO solvents studied by titration calorimetry at TÂ=Â298.15ÂK. Journal of Thermal Analysis and Calorimetry, 2013, 112, 399-405.	3.6	14
12	Interaction of pyridoxal-derived hydrazones with anions and Co2+, Co3+, Ni2+, Zn2+ cations. Physics and Chemistry of Liquids, 2020, , 1-13.	1.2	14
13	Complex formation of silver(I) with glycinate ion in aqueous ethanol and dimethyl sulfoxide solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 624-628.	1.0	12
14	The gibbs energies of transfer of glycine and glycinate ion from water into water-dimethyl sulfoxide mixtures. Russian Journal of Physical Chemistry A, 2010, 84, 329-331.	0.6	12
15	Application of isothermal titration calorimetry for evaluation of water–acetone and water–dimethylsulfoxide solvent influence on the molecular complex formation between 18-crown-6 and triglycine at 298.15ÂK. Journal of Thermal Analysis and Calorimetry, 2015, 121, 975-981.	3.6	12
16	Thermodynamics of complex formation between Cu(II) and glycyl–glycyl–glycine in water–ethanol and water–dimethylsulfoxide solvents. Journal of Thermal Analysis and Calorimetry, 2017, 130, 471-478.	3.6	12
17	Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5â€2-phosphate with isoniazid in an aqueous solution. Russian Journal of Physical Chemistry A, 2017, 91, 843-849.	0.6	12
18	Solvent effect of aqueous ethanol on complex formation and protolytic equilibria in nicotinic acid solutions. Russian Journal of Inorganic Chemistry, 2008, 53, 1943-1947.	1.3	11

#	Article	IF	CITATIONS
19	Thermodynamics of protolytic equilibrium of nicotinic acid in water-ethanol solutions. Russian Journal of Physical Chemistry A, 2010, 84, 792-795.	0.6	11
20	The influence of solvation on the formation of Ag+ complexes with 18-crown-6 ether in water-dimethyl sulfoxide solvents. Russian Journal of Physical Chemistry A, 2011, 85, 952-954.	0.6	11
21	The influence of reagents solvation on enthalpy change of glycine-ion protonation and silver(I) glycine-ion complexation in aqueous-dimethylsulfoxide solutions. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1457-1462.	3.6	11
22	Complexation between nickel(II), cobalt(III) and hydrazones derived from pyridoxal 5′-phosphate and hydrazides of 2-,3-,4-pyridinecarboxylic acids in aqueous solution. Journal of Coordination Chemistry, 2018, 71, 3304-3314.	2.2	11
23	Thermodynamic characteristics of the formation reactions of nickel(II) glycinates and the solvation of reagents in aqueous ethanol solutions. Russian Journal of Physical Chemistry A, 2010, 84, 153-157.	0.6	10
24	Thermodynamic characteristics of alanine-18-crown-6 ether complexes in binary water-acetone solvents. Russian Journal of Physical Chemistry A, 2012, 86, 36-39.	0.6	10
25	Pyrazine-2-carbohydrazone of Pyridoxal 5′-Phosphate: Synthesis, Stability, Formation Kinetics, and Interaction with DNA. Russian Journal of General Chemistry, 2019, 89, 230-235.	0.8	10
26	Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine. Russian Journal of Physical Chemistry A, 2012, 86, 1064-1067.	0.6	9
27	Stability of Cu(II) and Zn(II) Complexes with Pyridinecarbohydrazones of Pyridoxal-5-phosphate in Aqueous Solution. Russian Journal of General Chemistry, 2018, 88, 1436-1440.	0.8	9
28	Protonation of hydrazones derived from pyridoxal 5′-phosphate: Thermodynamic and structural elucidation. Journal of Molecular Liquids, 2020, 305, 112822.	4.9	9
29	Stability of Co(III), Ni(II), and Cu(II) Complexes with 2-Furan- and 2-Thiophenecarboxyhydrazones of Pyridoxal 5-Phosphate in Neutral Aqueous Solutions. Russian Journal of Inorganic Chemistry, 2020, 65, 119-125.	1.3	9
30	Complexation of Cyclodextrins with Benzoic Acid in Water-Organic Solvents: A Solvation-Thermodynamic Approach. Molecules, 2021, 26, 4408.	3.8	9
31	Thermodynamics of the Solvation and phase distributions of ethylenediamine in acetonitrile-dimethylsulfoxide-hexane systems. Russian Journal of Physical Chemistry A, 2013, 87, 444-448.	0.6	8
32	Gibbs energies of transferring triglycine from water into H2O-DMSO solvent. Russian Journal of Physical Chemistry A, 2014, 88, 1357-1360.	0.6	8
33	A thermodynamic study of reactions of amino acids with crown ethers in nonaqueous media as examples of guest—host molecular complex formation. Russian Chemical Bulletin, 2015, 64, 2536-2544.	1.5	8
34	Solvation peculiarities of nicotinamide in aqueous ethanol. Russian Chemical Bulletin, 2012, 61, 510-517.	1.5	7
35	Dependence of the enthalpies of formation of Ag+ complexes with glycinate ion and the protonation of glycinate ion on the content of aqueous ethanol solvent. Russian Journal of Physical Chemistry A, 2012, 86, 53-58.	0.6	6
36	Thermochemistry of solvation of 18-crown-6 ether in binary methanol-acetonitrile solvents. Russian Journal of Physical Chemistry A, 2013, 87, 1076-1078.	0.6	6

#	Article	IF	CITATIONS
37	Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures. Russian Journal of Physical Chemistry A, 2013, 87, 967-972.	0.6	6
38	Molecular complexation of some amino acids and triglycine with 18-crown-6 ether in H2O-EtOH solvents at 298.15 K. Russian Journal of Inorganic Chemistry, 2013, 58, 1264-1268.	1.3	6
39	Effect of solvation on the complexation of 18-crown-6 with amino acids in aqueous-organic media. Russian Journal of General Chemistry, 2014, 84, 911-917.	0.8	6
40	Constants and thermodynamics of the acid-base equilibria of triglycine in water–ethanol solutions containing sodium perchlorate at 298 K. Russian Journal of Physical Chemistry A, 2016, 90, 344-348.	0.6	6
41	Effect of Water–Ethanol Solvents on the Protonation Constants of Cryptand[2.2.2]. Russian Journal of Physical Chemistry A, 2018, 92, 710-713.	0.6	6
42	Host–guest inclusion complex of β-cyclodextrin and benzoic acid in water–ethanol solvents: spectroscopic and thermodynamic characterization of complex formation. Journal of Thermal Analysis and Calorimetry, 2020, 142, 2015-2024.	3.6	6
43	The influence of water-acetone solvents on the acid-base properties of glycylglycine. Russian Journal of Physical Chemistry A, 2009, 83, 396-399.	0.6	5
44	The thermochemical characteristics of nicotinamide coordination by iron(III) and ligand protonation in aqueous-ethanolic mixtures. Russian Journal of Physical Chemistry A, 2009, 83, 1734-1736.	0.6	5
45	C ₆₀ Fullerene Crystallosolvates with Tetralin, CCl ₄ and 1,2-dihlorobenzene: Determination of Composition by DSC and FT-IR Measurements. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 435-444.	2.1	5
46	Formation of molecular complexes between 18-crown-6 and amino acids in aqueous-organic media. Russian Journal of General Chemistry, 2014, 84, 227-234.	0.8	5
47	Enthalpies of glycylglycinate ion transfer from water to water-dimethyl sulfoxide solvent. Russian Journal of Physical Chemistry A, 2014, 88, 433-435.	0.6	5
48	Thermodynamics of molecular complexation of glycyl–glycyl–glycine with cryptand [2.2.2] in water–dimethylsulfoxide solvent at 298.15ÂK. Journal of Thermal Analysis and Calorimetry, 2016, 126, 307-314.	3.6	5
49	Effect of the Composition of Ethanol–DMSO Solvents on the Stability of Silver(I) Complexes with 18-Crown-6. Russian Journal of Inorganic Chemistry, 2018, 63, 687-690.	1.3	5
50	Effect of reactant solvation on the stability of complexes of silver(I) with 18-crown-6 in ethanol-dimethyl sulfoxide mixtures. Journal of Molecular Liquids, 2019, 276, 78-82.	4.9	5
51	Quantum-Chemical Calculations and Stability Analysis of Copper(II) Complexes with Cryptand[2.2.2]. Russian Journal of Inorganic Chemistry, 2021, 66, 1696-1702.	1.3	5
52	Dependence of the thermodynamic characteristics of the complexation of alanine-18-crown-6 on the composition of water-ethanol solvent. Russian Journal of Physical Chemistry A, 2013, 87, 204-207.	0.6	4
53	Variation of thermodynamic parameters of crown ether-metal complex formation and reactant solvation in binary nonaqueous solvent mixtures. Russian Journal of General Chemistry, 2013, 83, 430-433.	0.8	4
54	Thermodynamics of the solvation and phase distributions of 2,2′-dipyridyl in acetonitrile-DMSO-hexane and methanol-DMSO-hexane systems. Russian Journal of Physical Chemistry A, 2014, 88, 2060-2063.	0.6	4

#	Article	IF	CITATIONS
55	Change in the Gibbs energy of 18-crown-6 ether transfer from methanol to methanol-acetonitrile mixtures at 298 K. Russian Journal of Physical Chemistry A, 2015, 89, 73-75.	0.6	4
56	Thermodynamic characteristics of acid–base equilibria of glycyl-glycyl-glycine in water–ethanol solutions at 298 K. Russian Journal of Physical Chemistry A, 2016, 90, 2387-2392.	0.6	4
57	Thermodynamics of the formation of Cu2+–glycyl-glycyl-glycine complex in water–ethanol solutions at 298 K. Russian Journal of Physical Chemistry A, 2016, 90, 1960-1964.	0.6	4
58	The Schiff bases of pyridoxal-5-phosphate and hydrazides of certain pyrazoles: Stability, kinetics of formation, and synthesis. Russian Journal of General Chemistry, 2017, 87, 1161-1166.	0.8	4
59	Hydrogen bonds determine the signal arrangement in 13 C NMR spectra of nicotinate. Journal of Molecular Structure, 2018, 1154, 565-569.	3.6	4
60	Isothermal titration calorimetry investigation of the interactions between vitamin B6-derived hydrazones and bovine and human serum albumin. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5483-5490.	3.6	4
61	Complexation of nicotinamide with Ag+ ions in water-organic solvents. Russian Journal of Inorganic Chemistry, 2006, 51, 495-498.	1.3	3
62	Calculating the solvation contributions from reagents to the change in enthalpy of silver(I) complexation with 18-crown-6 ether in binary methanol-acetonitrile solvents. Russian Journal of Physical Chemistry A, 2012, 86, 50-52.	0.6	3
63	The influence of composition of acetonitrile-dimethyl sulfoxide solvent on stability of silver(I)-ethylenediamine complexes. Russian Journal of Inorganic Chemistry, 2013, 58, 1576-1578.	1.3	3
64	Solvation State of Nicotinamide in Binary Solvents by 13C NMR Probing at Different Temperatures. Applied Magnetic Resonance, 2016, 47, 349-359.	1.2	3
65	Association and Solvation of Silver Nitrate and Perchlorate in Aqueous Ethanol. Journal of Solution Chemistry, 2016, 45, 286-298.	1.2	3
66	Structure of pyridoxine solvates in aqueous solution from quantum-chemical calculations and NMR spectroscopy. Journal of Structural Chemistry, 2017, 58, 276-282.	1.0	3
67	Thermodynamics of the complex formation between Cu2+ and triglycine in water–ethanol solutions at 298 K. Russian Journal of Physical Chemistry A, 2017, 91, 1235-1240.	0.6	3
68	Constants of the Stability of Glycylglycinate Complexes of Copper(II) in Water–Ethanol Solutions. Russian Journal of Physical Chemistry A, 2019, 93, 1460-1464.	0.6	3
69	The Effect on Composition of EtOH : H2O Solution on the Stability of Cobalt(II) Glycylglycinate Complexes. Russian Journal of Inorganic Chemistry, 2020, 65, 535-539.	1.3	3
70	Composition and Stability of Copper(II) Complexes with [2.2.2]Cryptand in Aqueous and Aqueous Ethanol Solutions. Russian Journal of Physical Chemistry A, 2021, 95, 968-973.	0.6	3
71	Thermodynamics of Complexation Reactions between d-Metal Ions and Clycine and Clycylglycine Anions in Water–Organic Solvents. Russian Journal of Physical Chemistry A, 2021, 95, 1350-1357.	0.6	3
72	Thermodynamic parameters of the complexation of the silver(I) ion with 2,2′-dipyridyl in methanol-dimethylformamide binary solvents. Russian Journal of Physical Chemistry A, 2006, 80, 823-825.	0.6	2

#	Article	IF	CITATIONS
73	Thermodynamic characteristics of 2,2′-Dipyridyl solvation in binary methanol-acetonitrile solvents. Russian Journal of Physical Chemistry A, 2013, 87, 945-947.	0.6	2
74	Nicotinamide solvation state in aqueous dimethyl sulfoxide. Russian Chemical Bulletin, 2013, 62, 1183-1190.	1.5	2
75	Enthalpies of Iron(III) perchlorate and Fe3+ ion transfer from water into aqueous ethanol solvents. Russian Journal of Physical Chemistry A, 2013, 87, 1821-1824.	0.6	2
76	Complexation of nickel (II) ion with B3 vitamin in aqueous dimethyl sulfoxide. Open Chemistry, 2013, 11, 1959-1963.	1.9	2
77	Composition and stability of complexes of maleic and succinic acids with Cu2+ ions in water-ethanol solutions at 298 K. Russian Journal of Physical Chemistry A, 2014, 88, 1695-1699.	0.6	2
78	Effect of solvation on the thermodynamics of formation for 18-crown-6 ether complexes with glycine and triglycine in water-ethanol solutions at 298 K. Russian Journal of Physical Chemistry A, 2014, 88, 607-611.	0.6	2
79	Thermodynamics of formation for the 18-crown-6-triglycine molecular complex in water-dimethylsulfoxide solvents. Russian Journal of Physical Chemistry A, 2014, 88, 908-912.	0.6	2
80	Enthalpies of Glycine Protonation in Water–Acetone and Water–Ethanol Solvents. Russian Journal of Physical Chemistry A, 2018, 92, 2176-2181.	0.6	2
81	Thermodynamics and Kinetics of the Reaction between Pyridoxal-5-Phosphate and Hydrazides of 2-Methylfuran-3-Carboxylic and Thiophene-3-Carboxylic Acids in an Aqueous Solution. Russian Journal of Physical Chemistry A, 2019, 93, 192-197.	0.6	2
82	Protolytic Equilibrium Constants of Nicotinic Acid Solutions in Water–Dimethylsulfoxide Mixtures. Russian Journal of Physical Chemistry A, 2020, 94, 2030-2033.	0.6	2
83	Binding of quercetin and curcumin to human serum albumin in aqueous dimethyl sulfoxide and in aqueous ethanol. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5511-5518.	3.6	2
84	Influence of the composition of acetonitrile-dimethyl sulfoxide solvent on the thermodynamics of silver(I) complexation with piperidine. Russian Journal of Physical Chemistry A, 2007, 81, 1703-1705.	0.6	1
85	Dependence of enthalpies of formation of the Cu2+ complexes with glycinate ions on the composition of water—dimethylsulfoxide solvent. Russian Journal of Physical Chemistry A, 2012, 86, 215-218.	0.6	1
86	Thermochemistry of the silver(I) complexation with 18-crown-6 ether in binary acetonitrile—dimethylsulfoxide solvents. Russian Journal of Physical Chemistry A, 2012, 86, 151-153.	0.6	1
87	Thermodynamic characteristics of complex formation reactions between d- and f-elements and alkylated dipyrrolylmethene in dimethylformamide. Russian Journal of Physical Chemistry A, 2012, 86, 1053-1057.	0.6	1
88	Solvation of reagents in a silver(I)-nicotinamide coordination equilibrium in water-ethanol solutions, according to NMR data. Russian Journal of Physical Chemistry A, 2013, 87, 418-422.	0.6	1
89	Stability of coordination compounds of Co2+ and Ni2+ ions with maleic acid anion in aqueous isopropanol solutions. Russian Journal of Inorganic Chemistry, 2014, 59, 148-151.	1.3	1
90	Effect of water—ethanol solvent on the stability of copper(ii) coordination compound with the nicotinate ion. Russian Chemical Bulletin, 2015, 64, 2597-2600.	1.5	1

#	Article	IF	CITATIONS
91	Effect of the composition of dimethyl sulfoxide–acetonitrile solvent on the stability of silver(I) complexes with 2,2'-bipyridyl. Russian Journal of Inorganic Chemistry, 2016, 61, 926-928.	1.3	1
92	Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water–Dimethylsulfoxide Solvent Mixtures. Russian Journal of Physical Chemistry A, 2018, 92, 214-219.	0.6	1
93	Solvation of Piperidine in Nonaqueous Solvents. Russian Journal of Physical Chemistry A, 2018, 92, 2095-2097.	0.6	1
94	Molecular Dynamics Simulation of the Solvated Environment of 18-Crown-6 Ether in Mixed Ethanol–Dimethylsulfoxide. Russian Journal of Physical Chemistry A, 2019, 93, 1513-1518.	0.6	1
95	Calculating the Gibbs Energies of Solvation of 2,2'-Dipyridyl in Nonaqueous Solvents. Russian Journal of Physical Chemistry A, 2019, 93, 1206-1208.	0.6	1
96	Thermodynamic Characteristics of the Resolvation of Glycylglycinate Ions and Their Contribution to the Change in Stability of Complexes with Cu(II) and Ni(II) in Aqueous–Organic Solvents. Russian Journal of Physical Chemistry A, 2020, 94, 13-17.	0.6	1
97	Stability Constants of Copper(II) Glycylglycinate Complexes in Water–Dimethylsulfoxide Solutions. Russian Journal of Physical Chemistry A, 2020, 94, 249-253.	0.6	1
98	Entropy Effects in Intermolecular Associations of Crown-Ethers and Cyclodextrins with Amino Acids in Aqueous and in Non-Aqueous Media. Entropy, 2022, 24, 24.	2.2	1
99	Calorimetric study of the thermodynamics of iron (III) complexation with nicotinic acid in aqueous ethanol. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5519-5524.	3.6	1
100	Enthalpies of Acid-Base Equilibria in Aqueous Ethanol Solutions of Amino Acids and Peptides: Calculations and Experiments. Russian Journal of Physical Chemistry A, 2022, 96, 710-716.	0.6	1
101	Maleic acid solvation in mixed water-ethanol solvents. Russian Journal of Physical Chemistry A, 2012, 86, 577-579.	0.6	0
102	Stability of copper(II) complexes with nicotinate ion in water solutions of ethanol and dimethyl sulfoxide. Russian Journal of Inorganic Chemistry, 2016, 61, 1616-1619.	1.3	0
103	Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water–ethanol solvents. Russian Journal of Physical Chemistry A, 2017, 91, 662-666.	0.6	Ο
104	Influence of reagents solvation on [Ag18C6]+ complex formation in methanol‒acetonitrile mixed solvents. Russian Journal of General Chemistry, 2017, 87, 2229-2232.	0.8	0
105	Energy of Solvation and a Quantum-Chemical Model of the Structure of 18-Crown-6 Ether in Nonaqueous Solvents. Russian Journal of Physical Chemistry A, 2018, 92, 1494-1498.	0.6	Ο
106	Thermodynamics of the Acid–Base Equilibria of Glycyl–Glycyl–Glycine and the Formation of Its Complex with a Copper(II) Ion in Aqueous–Organic Solvents. Russian Journal of Physical Chemistry A, 2019, 93, 81-88.	0.6	0
107	Solvated State of Ethylenediamine in Nonaqueous Solvents, According to Quantum Chemical Data. Russian Journal of Physical Chemistry A, 2020, 94, 2051-2054.	0.6	0
108	Thermodynamic Characterization of the Chelate Effect in the Complexation of d-Metal Ions and Amines in Nonaqueous Media. Russian Journal of Physical Chemistry A, 2022, 96, 704-709.	0.6	0