Tom O Mcdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832990/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chasing COVIDâ€19 chemotherapeutics without putting the cart before the horse. British Journal of Clinical Pharmacology, 2023, 89, 421-423.	2.4	5
2	Dual-responsive degradable core–shell nanogels with tuneable aggregation behaviour. RSC Advances, 2022, 12, 2196-2206.	3.6	10
3	In Search of the Perfect Tan: Chemical Activity, Biological Effects, Business Considerations, and Consumer Implications of Dihydroxyacetone Sunless Tanning Products. Journal of Cosmetic Dermatology, 2022, , .	1.6	2
4	Linear and branched polymer prodrugs of the water-soluble nucleoside reverse-transcriptase inhibitor emtricitabine as structural materials for long-acting implants. Journal of Materials Chemistry B, 2022, 10, 4395-4404.	5.8	3
5	Inverse vulcanised sulfur polymer nanoparticles prepared by antisolvent precipitation. Journal of Materials Chemistry A, 2022, 10, 13704-13710.	10.3	10
6	Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. Nanoscale, 2021, 13, 7879-7896.	5.6	30
7	Redispersible nanosuspensions as a plausible oral delivery system for curcumin. Food Hydrocolloids, 2021, 121, 107005.	10.7	17
8	Scalable nanoprecipitation of niclosamide and <i>in vivo</i> demonstration of long-acting delivery after intramuscular injection. Nanoscale, 2021, 13, 6410-6416.	5.6	11
9	Evaluating the impact of systematic hydrophobic modification of model drugs on the control, stability and loading of lipid-based nanoparticles. Journal of Materials Chemistry B, 2021, 9, 9874-9884.	5.8	9
10	Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery. International Journal of Pharmaceutics, 2020, 574, 118866.	5.2	45
11	Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. International Journal of Pharmaceutics, 2020, 588, 119794.	5.2	22
12	Insights into the internal structures of nanogels using a versatile asymmetric-flow field-flow fractionation method. Nanoscale Advances, 2020, 2, 4713-4721.	4.6	13
13	Using pyrene to probe the effects of poloxamer stabilisers on internal lipid microenvironments in solid lipid nanoparticles. Nanoscale Advances, 2020, 2, 5572-5577.	4.6	5
14	Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Nanogels. Journal of Physical Chemistry B, 2019, 123, 6303-6313.	2.6	24
15	Tuning HIV drug release from a nanogel-based <i>in situ</i> forming implant by changing nanogel size. Journal of Materials Chemistry B, 2019, 7, 373-383.	5.8	28
16	Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. Journal of Materials Chemistry A, 2018, 6, 1840-1849.	10.3	70
17	Pâ€Type Lowâ€Molecularâ€Weight Hydrogelators. Macromolecular Rapid Communications, 2018, 39, e1700746.	3.9	3
18	Modulated release from implantable ocular silicone oil tamponade drug reservoirs. Journal of Polymer Science Part A, 2018, 56, 938-946.	2.3	8

TOM O MCDONALD

#	Article	IF	CITATIONS
19	Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems. Journal of Nanobiotechnology, 2018, 16, 22.	9.1	18
20	Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Advances, 2018, 8, 16444-16454.	3.6	24
21	MADIX polymerization of vinyl acetate using ethyl acetate as a green solvent; near-complete monomer conversion with molecular weight control. Journal of Polymer Science Part A, 2017, 55, 2427-2431.	2.3	10
22	Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs. Nanoscale, 2017, 9, 6302-6314.	5.6	32
23	Lack of interaction of lopinavir solid drug nanoparticles with cells of the immune system. Nanomedicine, 2017, 12, 2043-2054.	3.3	5
24	In vitro characterisation of solid drug nanoparticle compositions of efavirenz in a brain endothelium cell line. Journal of Interdisciplinary Nanomedicine, 2017, 2, 157-169.	3.6	0
25	Hierarchically porous carbon foams from pickering high internal phase emulsions. Carbon, 2016, 101, 253-260.	10.3	86
26	Towards a rational design of solid drug nanoparticles with optimised pharmacological properties. Journal of Interdisciplinary Nanomedicine, 2016, 1, 110-123.	3.6	17
27	Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies. Nature Communications, 2016, 7, 13184.	12.8	44
28	Accelerating Industrial Adoption of Metal Additive Manufacturing Technology. Jom, 2016, 68, 806-810.	1.9	22
29	Stable, polymer-directed and SPION-nucleated magnetic amphiphilic block copolymer nanoprecipitates with readily reversible assembly in magnetic fields. Nanoscale, 2016, 8, 7224-7231.	5.6	9
30	Using the hydrolysis of anhydrides to control gel properties and homogeneity in pH-triggered gelation. RSC Advances, 2015, 5, 95369-95378.	3.6	32
31	Polymerization of low molecular weight hydrogelators to form electrochromic polymers. Chemical Communications, 2015, 51, 10427-10430.	4.1	24
32	Probing gelation ability for a library of dipeptide gelators. Journal of Colloid and Interface Science, 2015, 455, 24-31.	9.4	32
33	The Application of Nanotechnology toÂDrug Delivery in Medicine. , 2015, , 173-223.		12
34	A low molecular weight hydrogel with unusual gel aging. Chemical Communications, 2015, 51, 6595-6597.	4.1	43
35	Photodimerisation of a coumarin-dipeptide gelator. Chemical Communications, 2015, 51, 12827-12830.	4.1	45
36	Hydrogels formed from Fmoc amino acids. CrystEngComm, 2015, 17, 8047-8057.	2.6	92

TOM O MCDONALD

#	Article	IF	CITATIONS
37	Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. Journal of Materials Chemistry A, 2015, 3, 4855-4864.	10.3	52
38	Lipase-Catalyzed Dissipative Self-Assembly of a Thixotropic Peptide Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-Cell Proliferation. Biomacromolecules, 2015, 16, 1157-1168.	5.4	41
39	Augmented Inhibition of CYP3A4 in Human Primary Hepatocytes by Ritonavir Solid Drug Nanoparticles. Molecular Pharmaceutics, 2015, 12, 3556-3568.	4.6	15
40	Spatially resolved multicomponent gels. Nature Chemistry, 2015, 7, 848-852.	13.6	232
41	Antiretroviral Solid Drug Nanoparticles with Enhanced Oral Bioavailability: Production, Characterization, and In Vitro–In Vivo Correlation. Advanced Healthcare Materials, 2014, 3, 400-411.	7.6	73
42	Air-stable photoconductive films formed from perylene bisimide gelators. Journal of Materials Chemistry C, 2014, 2, 5570-5575.	5.5	85
43	Electrochemically-triggered spatially and temporally resolved multi-component gels. Materials Horizons, 2014, 1, 241-246.	12.2	78
44	Hyperbranched polydendrons: a new controlled macromolecular architecture with self-assembly in water and organic solvents. Chemical Science, 2014, 5, 1844-1853.	7.4	42
45	Shining a Light on <i>s</i> -Triazine-Based Polymers. Journal of Physical Chemistry C, 2014, 118, 4314-4324.	3.1	45
46	The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale, 2014, 6, 13719-13725.	5.6	92
47	Salt-induced hydrogels from functionalised-dipeptides. RSC Advances, 2013, 3, 8714.	3.6	75
48	High-throughput nanoprecipitation of the organic antimicrobial triclosan and enhancement of activity against Escherichia coli. Journal of Materials Chemistry B, 2013, 1, 4455.	5.8	15
49	Dynamic Nuclear Polarization NMR Spectroscopy Allows High-Throughput Characterization of Microporous Organic Polymers. Journal of the American Chemical Society, 2013, 135, 15290-15293.	13.7	74
50	Shedding Light on Structure–Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain. Macromolecules, 2013, 46, 7696-7704.	4.8	44
51	Enzyme responsive materials: design strategies and future developments. Biomaterials Science, 2013, 1, 11-39.	5.4	257
52	Reactions of hydrophobic organic nanoparticle mixtures in water: nanoparticle-on-nanoparticle oxidative dye bleaching. Green Chemistry, 2013, 15, 1590.	9.0	3
53	Mediation of in Vitro Cytochrome P450 Activity by Common Pharmaceutical Excipients. Molecular Pharmaceutics, 2013, 10, 2739-2748.	4.6	36
54	Research Spotlight: Nanomedicines for HIV therapy. Therapeutic Delivery, 2013, 4, 153-156.	2.2	23

TOM O MCDONALD

#	Article	IF	CITATIONS
55	Architecture-driven aqueous stability of hydrophobic, branched polymer nanoparticles prepared by rapid nanoprecipitation. Soft Matter, 2012, 8, 9816.	2.7	28
56	Facile synthesis of complex multi-component organic and organic–magnetic inorganic nanocomposite particles. Journal of Materials Chemistry, 2012, 22, 24744.	6.7	20
57	One-pot, single-component synthesis of functional emulsion-templated hybrid inorganic–organic polymer capsules. Chemical Communications, 2012, 48, 1592-1594.	4.1	16
58	Dipeptide hydrogelation triggered via ultraviolet light. Chemical Communications, 2012, 48, 9355.	4.1	80
59	Multicomponent Organic Nanoparticles for Fluorescence Studies in Biological Systems. Advanced Functional Materials, 2012, 22, 2469-2478.	14.9	56
60	Branched peptide actuators for enzyme responsive hydrogel particles. Soft Matter, 2009, 5, 1728.	2.7	40
61	Bio-Responsive Hydrogels for Biomedical Applications. , 0, , 43-59.		4