List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy, 2010, 32, 91-102.	1.9	376
2	Performance measurement in agriâ€food supply chains: a case study. Supply Chain Management, 2007, 12, 304-315.	3.7	313
3	Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. Njas - Wageningen Journal of Life Sciences, 2010, 57, 109-115.	7.9	183
4	Understanding farmers' intention to adopt improved natural grassland using the theory of planned behavior. Livestock Science, 2014, 169, 163-174.	0.6	152
5	Effciency and productivity of conventional and organic farms in Finland 1994-1997. European Review of Agricultural Economics, 2002, 29, 51-65.	1.5	146
6	Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics, 2010, 61, 545-564.	1.6	141
7	Impact of <i>Xylella fastidiosa</i> subspecies <i>pauca</i> in European olives. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9250-9259.	3.3	134
8	FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agricultural Systems, 2010, 103, 585-597.	3.2	125
9	Performance Measurement of the Agricultural Marketing Cooperatives: The Gap between Theory and Practice. Applied Economic Perspectives and Policy, 2009, 31, 446-469.	1.0	124
10	Analysis of Seed Potato Systems in Ethiopia. American Journal of Potato Research, 2010, 87, 537-552.	0.5	122
11	Farmer response to policies promoting organic farming technologies in Finland. European Review of Agricultural Economics, 2001, 28, 1-15.	1.5	119
12	A typology of farm households for the Umutara Province in Rwanda. Food Security, 2009, 1, 321-335.	2.4	114
13	The Source of Productivity Growth in Dutch Agriculture: A Perspective from Finance. American Journal of Agricultural Economics, 2006, 88, 644-656.	2.4	100
14	Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis. European Journal of Operational Research, 2014, 237, 349-357.	3.5	94
15	Framework for Modelling Economic Impacts of Invasive Species, Applied to Pine Wood Nematode in Europe. PLoS ONE, 2012, 7, e45505.	1.1	92
16	Identifying psychological factors that determine cattle farmers' intention to use improved natural grassland. Journal of Environmental Psychology, 2016, 45, 89-96.	2.3	84
17	Vulnerability and adaptation of European farmers: a multi-level analysis of yield and income responses to climate variability. Regional Environmental Change, 2009, 9, 25.	1.4	81
18	Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms. European Journal of Operational Research, 2012, 223, 550-559.	3.5	80

#	Article	IF	CITATIONS
19	Measuring Excess Capital Capacity in Agricultural Production. American Journal of Agricultural Economics, 2009, 91, 765-776.	2.4	76
20	Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes. Environmental and Resource Economics, 2016, 64, 559-574.	1.5	73
21	Investigating technical efficiency and potential technological change in Dutch pig farming. Agricultural Systems, 2004, 79, 353-367.	3.2	71
22	Efficiency of Cooperatives and Investor Owned Firms Revisited. Journal of Agricultural Economics, 2012, 63, 142-157.	1.6	70
23	Using the theory of planned behavior to identify key beliefs underlying Brazilian cattle farmers' intention to use improved natural grassland: A MIMIC modelling approach. Land Use Policy, 2016, 55, 193-203.	2.5	69
24	Timing and type of exit from farming: farmers' early retirement programmes in Finland. European Review of Agricultural Economics, 2003, 30, 99-116.	1.5	68
25	Measuring technical and environmental efficiency in a state-contingent technology. European Journal of Operational Research, 2014, 236, 706-717.	3.5	66
26	Assessing the Forecasting Performance of a Generic Bioâ€Economic Farm Model Calibrated With Two Different PMP Variants. Journal of Agricultural Economics, 2010, 61, 274-294.	1.6	65
27	Analysis of farm performance in Europe under different climatic and management conditions to improve understanding of adaptive capacity. Climatic Change, 2007, 84, 403-422.	1.7	64
28	Designing the emerging EU pesticide policy: A literature review. Njas - Wageningen Journal of Life Sciences, 2013, 64-65, 95-103.	7.9	63
29	Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 2012, 95, 7391-7398.	1.4	61
30	Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal. International Journal of Production Economics, 2015, 166, 64-71.	5.1	61
31	Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agricultural Systems, 2017, 157, 118-128.	3.2	61
32	Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming. European Journal of Operational Research, 2014, 237, 658-664.	3.5	59
33	The effect of heating technologies on CO2 and energy efficiency of Dutch greenhouse firms. Journal of Environmental Management, 2003, 68, 73-82.	3.8	58
34	A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems. Environmental Management, 2010, 46, 862-877.	1.2	58
35	CO2 and Energy Efficiency of Different Heating Technologies in the Dutch Glasshouse Industry. Environmental and Resource Economics, 2003, 24, 395-407.	1.5	57
36	Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. Journal of Cleaner Production, 2017, 142, 385-394.	4.6	57

#	Article	IF	CITATIONS
37	Non-Parametric Production Analysis of Pesticides Use in the Netherlands. Journal of Productivity Analysis, 2004, 21, 49-65.	0.8	56
38	The adjustment-cost model of the firm: Duality and productive efficiency. International Journal of Production Economics, 2015, 168, 245-256.	5.1	56
39	Performance indicators in agri-food production chains. , 0, , 49-66.		55
40	Measuring corporate sustainability performance– the case of European food and beverage companies. Journal of Cleaner Production, 2018, 195, 734-743.	4.6	54
41	Improving Food Safety Within the Dairy Chain: An Application of Conjoint Analysis. Journal of Dairy Science, 2005, 88, 1601-1612.	1.4	53
42	PRATIQUE: a research project to enhance pest risk analysis techniques in the European Union. EPPO Bulletin, 2009, 39, 87-93.	0.6	52
43	Costs and efficacy of management measures to improve udder health on Dutch dairy farms. Journal of Dairy Science, 2010, 93, 115-124.	1.4	50
44	Measurement of Dynamic Efficiency: A Directional Distance Function Parametric Approach. American Journal of Agricultural Economics, 2011, 93, 756-767.	2.4	50
45	A Reducedâ€Form Model for Dynamic Efficiency Measurement: Application to Dairy Farms in Germany and The Netherlands. American Journal of Agricultural Economics, 2011, 93, 161-174.	2.4	49
46	Primal and dual dynamic Luenberger productivity indicators. European Journal of Operational Research, 2015, 241, 555-563.	3.5	49
47	Modelling the new EU cereals and oilseeds regime in the Netherlands. European Review of Agricultural Economics, 1996, 23, 161-178.	1.5	48
48	Can economic incentives encourage actual reductions in pesticide use and environmental spillovers?. Agricultural Economics (United Kingdom), 2012, 43, 267-276.	2.0	47
49	Factors influencing adoption of manure separation technology in the Netherlands. Journal of Environmental Management, 2015, 150, 1-8.	3.8	47
50	Economic impact assessment in pest risk analysis. Crop Protection, 2010, 29, 517-524.	1.0	46
51	Integrating Agronomic Principles into Production Function Specification: A Dichotomy of Growth Inputs and Facilitating Inputs. American Journal of Agricultural Economics, 2006, 88, 203-214.	2.4	42
52	Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming using Panel Data. Journal of Agricultural Economics, 2010, 61, 60-75.	1.6	42
53	Reducing Pesticide Use and Pesticide Impact by Productivity Growth: the Case of Dutch Arable Farming. Journal of Agricultural Economics, 2014, 65, 191-211.	1.6	42
54	Adoption of recirculating aquaculture systems in large pangasius farms: A choice experiment. Aquaculture, 2016, 460, 90-97.	1.7	42

#	Article	IF	CITATIONS
55	Using farmers' attitude and social pressures to design voluntary Bluetongue vaccination strategies. Preventive Veterinary Medicine, 2016, 133, 114-119.	0.7	42
56	Increasing the revenues from automatic milking by using individual variation in milking characteristics. Journal of Dairy Science, 2010, 93, 942-953.	1.4	41
57	Efficiency loss due to distortions in Dutch milk quota trade. European Review of Agricultural Economics, 1997, 24, 31-46.	1.5	40
58	Assessment of criteria and farming activities for tobacco diversification using the Analytical Hierarchical Process (AHP) technique. Agricultural Systems, 2012, 111, 53-62.	3.2	40
59	The relationship between technical efficiency and industrial concentration: Evidence from the Indonesian food and beverages industry. Journal of Asian Economics, 2012, 23, 466-475.	1.2	40
60	Dynamic pollution-adjusted inefficiency under the by-production of bad outputs. European Journal of Operational Research, 2019, 276, 202-211.	3.5	40
61	Analysis of strategic planning of Dutch pig farmers using a multivariate probit model. Agricultural Systems, 2003, 78, 73-84.	3.2	39
62	Price Volatility Transmission in Food Supply Chains: A Literature Review. Agribusiness, 2015, 31, 3-13.	1.9	39
63	Off-farm work decisions on Dutch cash crop farms and the 1992 and Agenda 2000 CAP reforms. Agricultural Economics (United Kingdom), 2000, 22, 163-171.	2.0	38
64	Farmâ€specific Adjustment Costs in Dutch Pig Farming. Journal of Agricultural Economics, 2004, 55, 3-24.	1.6	38
65	Do Farmers Internalise Environmental Spillovers of Pesticides in Production?. Journal of Agricultural Economics, 2013, 64, 624-640.	1.6	38
66	Factors underlying the investment decision in energy-saving systems in Dutch horticulture. Agricultural Systems, 2007, 94, 520-527.	3.2	36
67	Economic impacts of climatic variability and subsidies on European agriculture and observed adaptation strategies. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 35.	1.0	36
68	Analyzing the impact of investment spikes on dynamic productivity growth. Omega, 2015, 54, 116-124.	3.6	36
69	Dynamic multi-directional inefficiency analysis of European dairy manufacturing firms. European Journal of Operational Research, 2017, 257, 338-344.	3.5	36
70	Measuring the impact of COVIDâ€19 on stock prices and profits in the food supply chain. Agribusiness, 2021, 37, 171-186.	1.9	36
71	Distinguishing dairy cooperatives from investor-owned firms in Europe using financial indicators. Agribusiness, 2011, 27, 34-46.	1.9	34
72	Economic feasibility of recirculating aquaculture systems in pangasius farming. Aquaculture, Economics and Management, 2016, 20, 185-200.	2.3	34

#	Article	IF	CITATIONS
73	Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil. Agricultural Systems, 2016, 146, 70-79.	3.2	34
74	Delaying investments in sensor technology: The rationality of dairy farmers' investment decisions illustrated within the framework of real options theory. Journal of Dairy Science, 2018, 101, 7650-7660.	1.4	34
75	Downscaling Pest Risk Analyses: Identifying Current and Future Potentially Suitable Habitats for Parthenium hysterophorus with Particular Reference to Europe and North Africa. PLoS ONE, 2015, 10, e0132807.	1.1	33
76	Environmental and economic impacts of using co-products in the diets of finishing pigs in Brazil. Journal of Cleaner Production, 2017, 162, 247-259.	4.6	33
77	Asymmetric Adjustment of Dynamic Factors at the Firm Level. American Journal of Agricultural Economics, 1997, 79, 1340-1351.	2.4	32
78	A model of optimal import phytosanitary inspection under capacity constraint. Agricultural Economics (United Kingdom), 2008, 38, 363-373.	2.0	32
79	Price risk perceptions and management strategies in selected European food supply chains: An exploratory approach. Njas - Wageningen Journal of Life Sciences, 2017, 80, 15-26.	7.9	32
80	Sub-optimal economic behaviour with respect to mastitis management. European Review of Agricultural Economics, 2010, 37, 553-568.	1.5	31
81	Farmers' beliefs and voluntary vaccination schemes: Bluetongue in Dutch dairy cattle. Food Policy, 2015, 57, 40-49.	2.8	31
82	The optimal amount and allocation of sampling effort for plant health inspection. European Review of Agricultural Economics, 2009, 36, 295-320.	1.5	30
83	A multiple criteria decision making approach to manure management systems in the Netherlands. European Journal of Operational Research, 2014, 232, 643-653.	3.5	30
84	Comparison of Private Incentive Mechanisms for Improving Sustainability of Filipino Tuna Fisheries. World Development, 2016, 83, 264-279.	2.6	30
85	Non-separability and heterogeneity in integrated agronomic–economic analysis of nonpoint-source pollution. Ecological Economics, 2001, 38, 345-357.	2.9	29
86	Quantifying the effect of heat stress on daily milk yield and monitoring dynamic changes using an adaptive dynamic model. Journal of Dairy Science, 2011, 94, 4502-4513.	1.4	29
87	Energy Productivity Growth in the Dutch Greenhouse Industry. American Journal of Agricultural Economics, 2006, 88, 124-132.	2.4	28
88	Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis. PLoS ONE, 2015, 10, e0128217.	1.1	28
89	Damage control inputs: a comparison of conventional and organic farming systems. European Review of Agricultural Economics, 2005, 32, 167-189.	1.5	27
90	Costs and benefits of controlling quarantine diseases: a bioâ€economic modeling approach. Agricultural Economics (United Kingdom), 2008, 38, 137-149.	2.0	27

#	Article	IF	CITATIONS
91	Damage Control Productivity: An Input Damage Abatement Approach. Journal of Agricultural Economics, 2001, 52, 11-22.	1.6	27
92	The Impact of Direct Income Transfers of CAP on Greek Olive Farms' Performance: Using a Non-Monotonic Inefficiency Effects Model. Journal of Agricultural Economics, 2011, 62, 630-638.	1.6	27
93	An international comparison of productivity change in the textile and clothing industry: a bootstrapped Malmquist index approach. Empirical Economics, 2015, 48, 1499-1523.	1.5	27
94	Estimating shadow prices and efficiency analysis of productive inputs and pesticide use of vegetable production. European Journal of Operational Research, 2015, 245, 265-272.	3.5	27
95	Decomposing dynamic profit inefficiency of Belgian dairy farms. European Review of Agricultural Economics, 2018, 45, 81-99.	1.5	27
96	Frontier models for evaluating environmental efficiency: an overview. Economics and Business Letters, 2014, 3, 43.	0.4	27
97	Lowland farming system inefficiency in Benin (West Africa): directional distance function and truncated bootstrap approach. Food Security, 2010, 2, 367-382.	2.4	26
98	Economic consequences of investing in sensor systems on dairy farms. Computers and Electronics in Agriculture, 2015, 119, 33-39.	3.7	26
99	Investment Age and Dynamic Productivity Growth in the Spanish Food Processing Industry. American Journal of Agricultural Economics, 2016, 98, 946-961.	2.4	26
100	Capturing market impacts of farm level policies: a statistical extrapolation approach using biophysical characteristics and farm resources. Environmental Science and Policy, 2009, 12, 588-600.	2.4	25
101	Determinants of parasitic weed infestation in rainfed lowland rice in Benin. Agricultural Systems, 2014, 130, 105-115.	3.2	25
102	A Conceptual Approach for a Quantitative Economic Analysis of Farmers' Decision-Making Regarding Animal Welfare. Journal of Agricultural and Environmental Ethics, 2014, 27, 287-308.	0.9	25
103	Technical inefficiency of Vietnamese pangasius farming: A data envelopment analysis. Aquaculture, Economics and Management, 2018, 22, 229-243.	2.3	25
104	Access to finance from different finance provider types: Farmer knowledge of the requirements. PLoS ONE, 2017, 12, e0179285.	1.1	25
105	Inter-Firm and Intra-Firm Efficiency Measures. Journal of Productivity Analysis, 2001, 15, 185-199.	0.8	24
106	Effects of subsidies in Russian dairy farming. Agricultural Economics (United Kingdom), 2005, 33, 277-288.	2.0	24
107	Systems approaches to innovation in pest management: reflections and lessons learned from an integrated research program on parasitic weeds in rice. International Journal of Pest Management, 2015, 61, 329-339.	0.9	24
108	Decomposing productivity growth allowing efficiency gains and price-induced technical progress. European Review of Agricultural Economics, 2000, 27, 497-518.	1.5	23

#	Article	IF	CITATIONS
109	Modeling farm-level strategies for improving food safety in the dairy chain. Agricultural Systems, 2007, 94, 528-540.	3.2	23
110	Area Allocation Under Price Uncertainty on Dutch Arable Farms. Journal of Agricultural Economics, 1999, 50, 93-105.	1.6	22
111	Structure, conduct, and performance: evidence from the Indonesian food and beverages industry. Empirical Economics, 2013, 45, 1149-1165.	1.5	22
112	Mid-term financial impact of animal welfare improvements in Dutch broiler production. Poultry Science, 2013, 92, 3314-3329.	1.5	22
113	A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility. European Journal of Operational Research, 2020, 287, 1170-1179.	3.5	22
114	The perceived impact of quality assurance systems on tomato supply chain performance. Total Quality Management and Business Excellence, 2009, 20, 633-653.	2.4	21
115	Energy-neutral dairy chain in the Netherlands: An economic feasibility analysis. Biomass and Bioenergy, 2012, 36, 60-68.	2.9	21
116	On the pricing of undesirable state-contingent outputs. European Review of Agricultural Economics, 2014, 41, 485-509.	1.5	20
117	Price and Volatility Transmission and Market Power in the German Fresh Pork Supply Chain. Journal of Agricultural Economics, 2017, 68, 861-880.	1.6	20
118	Inputâ€Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms. Journal of Agricultural Economics, 2017, 68, 579-599.	1.6	20
119	Pre-harvest measures against Fusarium spp. infection and related mycotoxins implemented by Dutch wheat farmers. Crop Protection, 2019, 122, 9-18.	1.0	20
120	Efficiency of European Dairy Processing Firms. Njas - Wageningen Journal of Life Sciences, 2014, 70-71, 53-59.	7.9	19
121	Examining the relation between intangible assets and technical efficiency in the international textile and clothing industry. Journal of the Textile Institute, 2014, 105, 491-501.	1.0	19
122	Estimating farmers' productive and marketing inefficiency: an application to vegetable producers in Benin. Journal of Productivity Analysis, 2014, 42, 157-169.	0.8	19
123	Mobile Apps for Green Food Practices and the Role for Consumers: A Case Study on Dining Out Practices with Chinese and Dutch Young Consumers. Sustainability, 2019, 11, 1275.	1.6	19
124	Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle. Journal of Dairy Science, 2009, 92, 5720-5729.	1.4	18
125	A dynamic dual model under state-contingent production uncertainty. European Review of Agricultural Economics, 2010, 37, 293-312.	1.5	18
126	Farmers' Opinion on Seed Potato Management Attributes in Ethiopia: A Conjoint Analysis. Agronomy Journal, 2012, 104, 1413-1424.	0.9	18

#	Article	IF	CITATIONS
127	Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach. European Journal of Operational Research, 2014, 239, 237-242.	3.5	18
128	Economic feasibility of animal welfare improvements in Dutch intensive livestock production: A comparison between broiler, laying hen, and fattening pig sectors. Livestock Science, 2015, 182, 38-53.	0.6	18
129	Dynamic technical inefficiency and industrial concentration in the Indonesian food and beverages industry. British Food Journal, 2018, 120, 108-119.	1.6	18
130	Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming. Journal of Agricultural Economics, 2020, 71, 742-759.	1.6	18
131	Economic potential of individual variation in milk yield response to concentrate intake of dairy cows. Journal of Agricultural Science, 2010, 148, 263-276.	0.6	17
132	Effects of different broiler production systems on health care costs in the Netherlands. Poultry Science, 2014, 93, 1301-1317.	1.5	17
133	TECHNICAL EFFICIENCY AND ITS DETERMINANTS IN THE SPANISH CONSTRUCTION SECTOR PRE- AND POST-FINANCIAL CRISIS. International Journal of Strategic Property Management, 2015, 19, 96-109.	0.8	17
134	Total Factor Productivity: A Framework for Measuring Agriâ€food Supply Chain Performance Towards Sustainability. Applied Economic Perspectives and Policy, 2017, 39, 259-285.	3.1	17
135	Perceived risk and personality traits explaining heterogeneity in Dutch dairy farmers' beliefs about vaccination against Bluetongue. Journal of Risk Research, 2018, 21, 562-578.	1.4	17
136	Individual-based models in the analysis of disease transmission in plant production chains: An application to potato brown rot. Agricultural Systems, 2006, 90, 112-131.	3.2	16
137	Relationship characteristics and performance in fresh produce supply chains: the case of the Mexican avocado industry. Journal on Chain and Network Science, 2010, 10, 1-15.	1.6	16
138	A multi-level hierarchic Markov process with Bayesian updating for herd optimization and simulation in dairy cattle. Journal of Dairy Science, 2011, 94, 5938-5962.	1.4	16
139	Public and private roles in plant health management. Food Policy, 2011, 36, 166-170.	2.8	16
140	Quantitative economic impact assessment of an invasive plant disease under uncertainty – A case study for potato spindle tuber viroid (PSTVd) invasion into the European Union. Crop Protection, 2012, 40, 28-35.	1.0	16
141	THE IMPACT OF INTERNATIONALIZATION AND DIVERSIFICATION ON CONSTRUCTION INDUSTRY PERFORMANCE. International Journal of Strategic Property Management, 2016, 20, 172-183.	0.8	16
142	The impact of the 2008 financial crisis on dynamic productivity growth of the Spanish food manufacturing industry. An impulse response analysis. Agricultural Economics (United Kingdom), 2017, 48, 561-571.	2.0	16
143	Emerging risks identification on food and feed – EFSA. EFSA Journal, 2018, 16, e05359.	0.9	16
144	Cost‣ffective Sampling and Analysis for Mycotoxins in a Cereal Batch. Risk Analysis, 2019, 39, 926-939.	1.5	16

#	Article	IF	CITATIONS
145	Productivity growth and efficiency measurement: a dual approach. European Review of Agricultural Economics, 2000, 27, 59-73.	1.5	15
146	Industrial concentration and price-cost margin of the Indonesian food and beverages sector. Applied Economics, 2012, 44, 3805-3814.	1.2	15
147	Economic justification for quarantine status – the case study of â€~ <i>Candidatus</i> Liberibacter solanacearum' in the European Union. Plant Pathology, 2013, 62, 1106-1113.	1.2	15
148	Quantitative economic impact assessment of invasive plant pests: What does it require and when is it worth the effort?. Crop Protection, 2015, 69, 9-17.	1.0	15
149	Fisher-Level Decision Making to Participate in Fisheries Improvement Projects (FIPs) for Yellowfin Tuna in the Philippines. PLoS ONE, 2016, 11, e0163537.	1.1	15
150	Spatial dynamic analysis of productivity growth of agriâ€food companies. Agricultural Economics (United Kingdom), 2019, 50, 315-327.	2.0	15
151	Improving Food Safety at the Dairy Farm Level: Farmers' and Experts' Perceptions. Applied Economic Perspectives and Policy, 2005, 27, 574-592.	1.0	14
152	Cost implications of improving food safety in the Dutch dairy chain. European Review of Agricultural Economics, 2006, 33, 511-541.	1.5	14
153	Asymmetric Price Transmission in Food Supply Chains: Impulse Response Analysis by Local Projections Applied to U.S. Broiler and Pork Prices. Agribusiness, 2013, 29, 325-343.	1.9	14
154	Benchmarking the sustainability performance of the Brazilian non-GM and GM soybean meal chains: An indicator-based approach. Food Policy, 2015, 55, 22-32.	2.8	14
155	Farmers' Preferences For Bluetongue Vaccination SchemeÂAttributes: An Integrated Choice and Latent Variable Approach. Journal of Agricultural Economics, 2018, 69, 537-560.	1.6	14
156	Assessing the Sustainability Performance of Coffee Farms in Vietnam: A Social Profit Inefficiency Approach. Sustainability, 2018, 10, 4227.	1.6	14
157	Corporate social responsibility and dynamic productivity change in the US food and beverage manufacturing industry. Agribusiness, 2021, 37, 286-305.	1.9	14
158	Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Puglia. Crop Protection, 2021, 142, 105519.	1.0	14
159	Effects of N-surplus taxes: Combining technical and historical information. European Review of Agricultural Economics, 1997, 24, 231-247.	1.5	13
160	Scenarios for a future dairy chain in the Netherlands. Njas - Wageningen Journal of Life Sciences, 2009, 56, 301-323.	7.9	13
161	Integrating structure, conduct and performance into value chain analysis. Journal on Chain and Network Science, 2014, 14, 21-30.	1.6	13
162	Price Transmission, International Trade, and Asymmetric Relationships in the Dutch Agriâ€Food Chain. Agribusiness, 2015, 31, 521-542.	1.9	13

#	Article	IF	CITATIONS
163	Identifying successful strategies for honey value chains in Brazil: a conjoint study. British Food Journal, 2016, 118, 1800-1820.	1.6	13
164	Price transmission along the Vietnamese pangasius export chain. Aquaculture, 2018, 493, 416-423.	1.7	13
165	Effects of incorporating environmental cost and risk aversion on economic values of pig breeding goal traits. Journal of Animal Breeding and Genetics, 2018, 135, 194-207.	0.8	13
166	The technical and economic impact of veterinary interventions aimed at reducing antimicrobial use on broiler farms. Poultry Science, 2019, 98, 6644-6658.	1.5	13
167	Adoption of innovation in agriculture: a critical review of economic and psychological models. International Journal of Innovation and Sustainable Development, 2019, 13, 36.	0.3	13
168	Creating a typology of tobacco farms according to determinants of diversification in Valle de Lerma (Salta-Argentina). Spanish Journal of Agricultural Research, 2010, 8, 460.	0.3	13
169	Input Disposability and Efficiency in Dutch Arable Farming. Journal of Agricultural Economics, 2003, 54, 467-478.	1.6	12
170	Estimation of Stochastic Frontier Models with Fixed Effects through Monte Carlo Maximum Likelihood. Journal of Probability and Statistics, 2011, 2011, 1-13.	0.3	12
171	A method to select alternative agricultural activities for future-oriented land use studies. European Journal of Agronomy, 2012, 40, 75-85.	1.9	12
172	Identifying Sustainability Issues for Soymeal and Beef Production Chains. Journal of Agricultural and Environmental Ethics, 2014, 27, 949-965.	0.9	12
173	Expected utility of voluntary vaccination in the middle of an emergent Bluetongue virus serotype 8 epidemic: A decision analysis parameterized for Dutch circumstances. Preventive Veterinary Medicine, 2014, 115, 75-87.	0.7	12
174	Performance and access to finance in Indonesian horticulture. British Food Journal, 2017, 119, 625-638.	1.6	12
175	Credence attributes and the quest for a higher price – a hedonic stochastic frontier approach. European Review of Agricultural Economics, 2019, 46, 163-192.	1.5	12
176	Response to a selection index including environmental costs and risk preferences of producers1. Journal of Animal Science, 2019, 97, 156-171.	0.2	12
177	Modeling the Rejection Probability in Plant Imports. Phytopathology, 2008, 98, 728-735.	1.1	10
178	Adaptive models for online estimation of individual milk yield response to concentrate intake and milking interval length of dairy cows. Journal of Agricultural Science, 2011, 149, 769-781.	0.6	10
179	Assessing the Impact of Changing Economic Environment on Productivity Growth: The Case of the Spanish Dairy Processing Industry. Journal of Food Products Marketing, 2017, 23, 384-397.	1.4	10
180	Inefficiency of manual weeding in rainfed rice systems affected by parasitic weeds. Agricultural Economics (United Kingdom), 2019, 50, 151-163.	2.0	10

#	Article	IF	CITATIONS
181	Testing among functional forms: an extension of the Generalized Box-Cox formulation. Applied Economics, 1998, 30, 1001-1010.	1.2	9
182	Dynamic Area Allocation and Economies of Scale and Scope. Journal of Agricultural Economics, 2001, 52, 38-52.	1.6	9
183	Exploring Farm Investment Behaviour in Transition: The Case of Russian Agriculture. Journal of Agricultural Economics, 2009, 60, 436-464.	1.6	9
184	Optimizing bulk milk dioxin monitoring based on costs and effectiveness. Journal of Dairy Science, 2013, 96, 4125-4141.	1.4	9
185	The relation between technical farm performance and antimicrobial use of broiler farms. Poultry Science, 2020, 99, 1349-1356.	1.5	9
186	On consumer impact from Xylella fastidiosa subspecies pauca. Ecological Economics, 2021, 185, 107024.	2.9	9
187	Technical efficiency and CO2 abatement policies in the Dutch glasshouse industry. Agricultural Economics (United Kingdom), 2003, 28, 99-108.	2.0	8
188	Analyzing greenhouse firm performance across different marketing channels. Agribusiness, 2006, 22, 267-280.	1.9	8
189	Cost-Effective Control of a Quarantine Disease: A Quantitative Exploration Using "Design of Experiments―Methodology and Bio-Economic Modeling. Phytopathology, 2007, 97, 945-957.	1.1	8
190	Application of DSSAT Crop Models to Generate Alternative Production Activities Under Combined Use of Organic-Inorganic Nutrients in Rwanda. Journal of Crop Improvement, 2012, 26, 346-363.	0.9	8
191	Public multi-criteria assessment for societal concerns and gradual labelling. Food Policy, 2013, 40, 97-108.	2.8	8
192	Elicitation of preferences of Dutch broiler and pig farmers to support decision making on animal welfare. Njas - Wageningen Journal of Life Sciences, 2016, 76, 75-86.	7.9	8
193	Technical Efficiency of the Spanish Dairy Processing Industry: Do Size and Exporting Matter?. , 2013, , 93-106.		8
194	Technical and scale efficiency of intensive white-leg shrimp (<i>Litopenaeus vannamei</i>) farming in Vietnam: AÂdata envelopment analysis. Aquaculture, Economics and Management, 2023, 27, 50-65.	2.3	8
195	Cost-effective allocation of resources for monitoring dioxins along the pork production chain. Food Research International, 2014, 62, 618-627.	2.9	7
196	Analyzing diversification possibilities on specialized tobacco farms in Argentina using a bio-economic farm model. Agricultural Systems, 2014, 128, 35-43.	3.2	7
197	A conceptual framework for economic optimization of single hazard surveillance in livestock production chains. Preventive Veterinary Medicine, 2014, 114, 188-200.	0.7	7
198	Comparing groups of Brazilian cattle farmers with different levels of intention to use improved natural grassland. Livestock Science, 2015, 178, 296-305.	0.6	7

#	Article	IF	CITATIONS
199	The impact of inefficiency on diversification. Journal of Productivity Analysis, 2015, 44, 189-198.	0.8	7
200	FAD vs. free school: Effort allocation by Marine Stewardship Council compliant Filipino tuna purse seiners in the PNA. Marine Policy, 2018, 90, 137-145.	1.5	7
201	A multi-level and multi-actor approach to risk governance: a conceptual framework to support policy development for Ambrosia weed control. Journal of Risk Research, 2018, 21, 780-799.	1.4	7
202	Optimization of the Aflatoxin Monitoring Costs along the Maize Supply Chain. Risk Analysis, 2019, 39, 2227-2236.	1.5	7
203	Measuring dynamic inefficiency in the presence of corporate social responsibility and input indivisibilities. Expert Systems With Applications, 2021, 176, 114849.	4.4	7
204	Estimating Farm Productivity Differentials using Panel Data: The Hausmanâ€Taylor Approach. Journal of Agricultural Economics, 2003, 54, 397-415.	1.6	6
205	Development and performance of Russian agricultural enterprises, 1990–2001. Post-Communist Economies, 2004, 16, 439-457.	1.3	6
206	Productivity growth and inter-sector spill-over in Dutch horticulture, 1976-1995. Agricultural Economics (United Kingdom), 2006, 34, 109-116.	2.0	6
207	Nonâ€Parametric Modelling of CO ₂ Emission Quota. Journal of Agricultural Economics, 2008, 59, 487-497.	1.6	6
208	Cross-border Collaboration in the Field of Highly Contagious Livestock Diseases: A General Framework for Policy Support. Transboundary and Emerging Diseases, 2014, 61, 300-315.	1.3	6
209	Least-Cost Seed Potato Production in Ethiopia. Potato Research, 2015, 58, 277-300.	1.2	6
210	Measuring and explaining multi-directional inefficiency in the Malaysian dairy industry. British Food Journal, 2017, 119, 2788-2803.	1.6	6
211	Attitudes of Dutch Citizens toward Sow Husbandry with Regard to Animals, Humans, and the Environment. Anthrozoos, 2017, 30, 195-211.	0.7	6
212	The effect of farm genetics expenses on dynamic productivity growth. European Journal of Operational Research, 2021, 290, 701-717.	3.5	6
213	Spatial Spillovers on Inputâ€specific Inefficiency of Dutch Arable Farms. Journal of Agricultural Economics, 2021, 72, 224-243.	1.6	6
214	Stakeholder viewpoints on facilitation of cross-border cooperation. European Planning Studies, 2022, 30, 627-642.	1.6	6
215	Dynamic sustainable productivity growth of Dutch dairy farming. PLoS ONE, 2022, 17, e0264410.	1.1	6
216	Effects of management information from FADN on profitability of Dutch potted-plant firms. Agricultural Economics (United Kingdom), 2005, 33, 325-331.	2.0	5

#	Article	IF	CITATIONS
217	Energy-saving Technology Choices by Dutch Glasshouse Firms. Journal of Agricultural Economics, 2006, 57, 129-144.	1.6	5
218	Investment Spikes in Dutch Greenhouse Horticulture. Journal of Agricultural Economics, 2008, 59, 516-536.	1.6	5
219	Prospects for cost reductions from relaxing additional cross-border measures related to livestock trade. Preventive Veterinary Medicine, 2013, 109, 278-292.	0.7	5
220	Simulation of Cross-border Impacts Resulting from Classical Swine Fever Epidemics within the Netherlands and Germany. Transboundary and Emerging Diseases, 2016, 63, e80-e102.	1.3	5
221	A conceptual framework for economic optimization of an animal health surveillance portfolio. Epidemiology and Infection, 2016, 144, 1084-1095.	1.0	5
222	Systematic Review of Methods to Determine the Costâ€Effectiveness of Monitoring Plans for Chemical and Biological Hazards in the Life Sciences. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 633-645.	5.9	5
223	Measuring dynamic biased technical change in Lithuanian cereal farms. Agribusiness, 2020, 36, 208-225.	1.9	5
224	Technical inefficiency of Dutch vegetable farms: Specific-input analyses. PLoS ONE, 2021, 16, e0250494.	1.1	5
225	Beyond upgrading typologies – In search of a better deal for honey value chains in Brazil. PLoS ONE, 2017, 12, e0181391.	1.1	5
226	Factors influencing the stay-exit intention of small livestock farmers: empirical evidence from southern Chile. Spanish Journal of Agricultural Research, 2018, 16, e0102.	0.3	5
227	Can differences in innovativeness between European cross-border regions be explained by factors impeding cross-border business interaction?. PLoS ONE, 2021, 16, e0258591.	1.1	5
228	Generalised maximum entropy estimation and heterogeneous technologies. European Review of Agricultural Economics, 1999, 26, 101-115.	1.5	4
229	Technical efficiency and CO2abatement policies in the Dutch glasshouse industry. Agricultural Economics (United Kingdom), 2003, 28, 99-108.	2.0	4
230	Semiâ€parametric Modelling of Investments in Heating Installations: The Case of the Dutch Glasshouse Industry. Journal of Agricultural Economics, 2005, 56, 433-448.	1.6	4
231	Standardized data in the broiler value chain. Poultry Science, 2011, 90, 498-506.	1.5	4
232	Potential Impact of Alternative Agricultural Technologies to Ensure Food Security and Raise Income of Farm Households in Rwanda. Forum for Development Studies, 2015, 42, 133-157.	0.7	4
233	Multi-Criteria Decision Making to Evaluate Quarantine Disease Control Strategies. , 0, , 131-144.		4
234	Modelling of brown rot prevalence in the Dutch potato production chain over time: from state variable to individual-based models. Nonlinear Analysis: Real World Applications, 2005, 6, 797-815.	0.9	3

#	Article	IF	CITATIONS
235	Minimization of the Impact of Aujeszky's Disease Outbreaks in The Netherlands: A Conceptual Framework. Transboundary and Emerging Diseases, 2013, 60, 303-314.	1.3	3
236	Price Rigidity and Industrial Concentration: Evidence from the Indonesian Food and Beverages Industry. Asian Economic Journal, 2015, 29, 61-72.	0.5	3
237	Economic Analysis of Classical Swine Fever Surveillance in the Netherlands. Transboundary and Emerging Diseases, 2016, 63, 296-313.	1.3	3
238	Managerial and program inefficiency for European meat manufacturing firms: A dynamic multidirectional inefficiency analysis approach. Journal of Productivity Analysis, 2018, 49, 25-36.	0.8	3
239	The Effect of Crop Specialization on Farms' Performance: A Bayesian Non-neutral Stochastic Frontier Approach. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	3
240	The role of access to finance from different finance providers in production risks of horticulture in Indonesia. PLoS ONE, 2021, 16, e0257812.	1.1	3
241	Investment Inefficiency and Corporate Social Responsibility. Journal of Productivity Analysis, 2022, 58, 95-108.	0.8	3
242	Subsidy or policy certainty: Which attribute is more important for broiler farmers when investing in particulate matter abatement technology?. Journal of Cleaner Production, 2022, 366, 132910.	4.6	3
243	Editorial Introduction: Economics of Sustainable Energy and Agriculture. Environmental and Resource Economics, 2003, 24, 287-289.	1.5	2
244	Improving cost-effectiveness of brown rot control: the value of bio-economic modelling. EPPO Bulletin, 2007, 37, 391-394.	0.6	2
245	Interceptions of harmful organisms during import inspections of cut flowers in the Netherlands: an empirical and theoretical analysis of the ?reduced checks? system. EPPO Bulletin, 2007, 37, 395-403.	0.6	2
246	Comparative analysis as a management tool for broiler breeder farms: Simulated individual farm analysis (IFAS). Poultry Science, 2012, 91, 744-757.	1.5	2
247	Future structural developments in Dutch and German livestock production and implications for contagious livestock disease control. Technological Forecasting and Social Change, 2014, 82, 95-114.	6.2	2
248	Measurement and Sources of Input-Specific Productivity Growth: Evidence from Construction Industry in Spain and Portugal. SSRN Electronic Journal, 0, , .	0.4	2
249	Contractual arrangements and food quality certifications in the Mexican avocado industry. Spanish Journal of Agricultural Research, 2013, 11, 3.	0.3	2
250	Measuring firms' dynamic inefficiency accounting for corporate social responsibility in the U.S. food and beverage manufacturing industry. Applied Economic Perspectives and Policy, 2022, 44, 1702-1721.	3.1	2
251	Dynamics of industrial concentration and technical inefficiency in the Indonesian food and beverage industry. Agribusiness, 2022, 38, 734-739.	1.9	2
252	Long and Short Term Economies of Scope in Dutch Vegetable Production. Journal of Agricultural Economics, 2001, 52, 123-138.	1.6	1

#	Article	IF	CITATIONS
253	Pest risk assessment made by France on Banana bract mosaic virus considered by France as harmful in French overseas departments of French Guiana, Guadeloupe, Martinique and Réunion ―Scientific Opinion of the Panel on Plant Health. EFSA Journal, 2008, 6, .	0.9	1
254	Evaluation of pest risk assessments and risk management options prepared to justify requests for phytosanitary measures under Council Directive 2000/29/EC ―Guidance of the Panel on Plant Health. EFSA Journal, 2009, 7, 1194.	0.9	1
255	Dynamic and Static Behaviour with Respect to Energy Use and Investment of Dutch Greenhouse Firms. Environmental and Resource Economics, 2015, 61, 595-614.	1.5	1
256	Dynamic Cost Inefficiency of the European Union Meat Processing Firms. Journal of Agricultural Economics, 2020, 71, 760-777.	1.6	1
257	Incentives to Stimulate European Wheat Farmers to Adapt Their Fusarium Species Mycotoxin Management. Toxins, 2021, 13, 144.	1.5	1
258	A multipleâ€standards framework to address externalities resulting from meat production. Applied Economic Perspectives and Policy, 0, , .	3.1	1
259	Off-farm work decisions on Dutch cash crop farms and the 1992 and Agenda 2000 CAP reforms. , 2000, 22, 163.		1
260	Costs and benefits of controlling quarantine diseases: a bio-economic modeling approach. Agricultural Economics (United Kingdom), 2008, 38, 137-149.	2.0	1
261	Adoption of innovation in agriculture: a critical review of economic and psychological models. International Journal of Innovation and Sustainable Development, 2019, 13, 36.	0.3	1
262	Crop and soil specific N and P efficiency and productivity in Finland. Agricultural and Food Science, 2005, 14, 264.	0.3	1
263	A dynamic byâ€production framework for measuring productivity change in the presence of socially responsible and undesirable outputs: Evidence from European food processors. Agribusiness, 0, , .	1.9	1
264	Endogenous Dynamic Inefficiency and Optimal Resource Allocation: An application to the European Dietetic Food Industry. European Journal of Operational Research, 2022, , .	3.5	1
265	Bio-economic modelling of potato brown rot in the Netherlands*. EPPO Bulletin, 2003, 33, 525-527.	0.6	0
266	Animals' health control efficiency in Northwest Portugal: A two-stage DEA approach. Acta Agriculturae Scandinavica Section C: Food Economics, 2010, 7, 197-208.	0.1	0
267	A model for an economically optimal replacement of a breeder flock. Poultry Science, 2012, 91, 3271-3279.	1.5	0