Francesco Bellia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832825/publications.pdf

Version: 2024-02-01

361045 414034 1,079 46 20 32 citations h-index g-index papers 47 47 47 1327 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Terpyridine functionalized cyclodextrin nanoparticles: metal coordination for tuning anticancer activity. Dalton Transactions, 2022, 51, 5000-5003.	1.6	7
2	Insulin-Degrading Enzyme Is a Non Proteasomal Target of Carfilzomib and Affects the 20S Proteasome Inhibition by the Drug. Biomolecules, 2022, 12, 315.	1.8	3
3	Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. Antioxidants, 2022, 11, 664.	2.2	4
4	Neuroprotective Effect of Carnosine Is Mediated by Insulin-Degrading Enzyme. ACS Chemical Neuroscience, 2022, , .	1.7	13
5	Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells, 2022, 11, 1696.	1.8	3
6	Antimicrobial, Antioxidant, and Cytotoxic Activities of Juglans regia L. Pellicle Extract. Antibiotics, 2021, 10, 159.	1.5	19
7	Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules, 2021, 26, 1724.	1.7	6
8	In Vitro Antibacterial, Anti-Adhesive and Anti-Biofilm Activities of Krameria lappacea (Dombey) Burdet & Simpson Root Extract against Methicillin-Resistant Staphylococcus aureus Strains. Antibiotics, 2021, 10, 428.	1.5	14
9	Synthesis and biological evaluation of novel \hat{l}^2 -cyclodextrin-fluvastatin conjugates. Results in Chemistry, 2021, 3, 100230.	0.9	0
10	Pyrazolones Activate the Proteasome by Gating Mechanisms and Protect Neuronal Cells from βâ€Amyloid Toxicity. ChemMedChem, 2020, 15, 302-316.	1.6	15
11	Acrolein and Copper as Competitive Effectors of αâ€Synuclein. Chemistry - A European Journal, 2020, 26, 1871-1879.	1.7	8
12	Hyaluronan-carnosine conjugates inhibit $\hat{Al^2}$ aggregation and toxicity. Scientific Reports, 2020, 10, 15998.	1.6	17
13	Carnoquinolines Target Copper Dyshomeostasis, Aberrant Protein–Protein Interactions, and Oxidative Stress. Chemistry - A European Journal, 2020, 26, 16690-16705.	1.7	7
14	Structural and functional evidence for citicoline binding and modulation of 20S proteasome activity: Novel insights into its pro-proteostatic effect. Biochemical Pharmacology, 2020, 177, 113977.	2.0	13
15	IDE Degrades Nociceptin/Orphanin FQ through an Insulin Regulated Mechanism. International Journal of Molecular Sciences, 2019, 20, 4447.	1.8	9
16	Site directed mutagenesis of insulin-degrading enzyme allows singling out the molecular basis of peptidase <i>versus</i> E1-like activity: the role of metal ions. Metallomics, 2019, 11, 278-281.	1.0	11
17	Focusing on the functional characterization of the anserinase from Oreochromis niloticus. International Journal of Biological Macromolecules, 2019, 130, 158-165.	3.6	2
18	Porphyrin Cyclodextrin Conjugates Modulate Amyloid Beta Peptide Aggregation and Cytotoxicity. Chemistry - A European Journal, 2018, 24, 6349-6353.	1.7	21

#	Article	IF	CITATIONS
19	Tau-peptide fragments and their copper(II) complexes: Effects on Amyloid- \hat{l}^2 aggregation. Inorganica Chimica Acta, 2018, 472, 82-92.	1.2	17
20	An inorganic overview of natural $\hat{Al^2}$ fragments: Copper(II) and zinc(II)-mediated pathways. Coordination Chemistry Reviews, 2018, 369, 1-14.	9.5	14
21	Cyclodextrin Nanoparticles Bearing 8â€Hydroxyquinoline Ligands as Multifunctional Biomaterials. Chemistry - A European Journal, 2017, 23, 4442-4449.	1.7	23
22	Structural Isomers of Cyclodextrinâ€Bearing IOX1 Compound as Inhibitors of Aβ Aggregation. ChemistrySelect, 2017, 2, 655-659.	0.7	9
23	Multitarget trehalose-carnosine conjugates inhibit $A\hat{l}^2$ aggregation, tune copper(II) activity and decrease acrolein toxicity. European Journal of Medicinal Chemistry, 2017, 135, 447-457.	2.6	32
24	Linear polymers of \hat{l}^2 and \hat{l}^3 cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydrate Polymers, 2017, 177, 355-360.	5.1	22
25	Aminocyclodextrin Oligomers as Protective Agents of Protein Aggregation. ChemPlusChem, 2016, 81, 660-665.	1.3	7
26	Trehalose-8-hydroxyquinoline conjugates as antioxidant modulators of AÎ ² aggregation. RSC Advances, 2016, 6, 47229-47236.	1.7	14
27	Liposome antibody–ionophore conjugate antiproliferative activity increases by cellular metallostasis alteration. MedChemComm, 2016, 7, 2364-2367.	3.5	6
28	Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self―and Metalâ€Induced Aβ Aggregation. Chemistry - A European Journal, 2015, 21, 14047-14059.	1.7	33
29	Carnosine and Cognitive Deficits. , 2015, , 973-982.		6
30	Soluble Sugar-Based Quinoline Derivatives as New Antioxidant Modulators of Metal-Induced Amyloid Aggregation. Inorganic Chemistry, 2015, 54, 2591-2602.	1.9	47
31	Carnosinases, Their Substrates and Diseases. Molecules, 2014, 19, 2299-2329.	1.7	74
32	Copper(II)-chelating homocarnosine glycoconjugate as a new multifunctional compound. Journal of Inorganic Biochemistry, 2014, 131, 56-63.	1.5	32
33	The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. Journal of Mass Spectrometry, 2014, 49, 274-279.	0.7	44
34	New derivative of carnosine for nanoparticle assemblies. European Journal of Medicinal Chemistry, 2013, 70, 225-232.	2.6	17
35	Formation of insulin fragments by insulinâ€degrading enzyme: the role of zinc(II) and cystine bridges. Journal of Mass Spectrometry, 2013, 48, 135-140.	0.7	36
36	Inorganic Stressors of Ubiquitin. Inorganic Chemistry, 2013, 52, 9567-9573.	1.9	24

3

#	Article	lF	CITATION
37	Carnosine derivatives: new multifunctional drug-like molecules. Amino Acids, 2012, 43, 153-163.	1.2	50
38	Neuroprotective features of carnosine in oxidative driven diseases. Molecular Aspects of Medicine, 2011, 32, 258-266.	2.7	110
39	Administration of carnosine in the treatment of acute spinal cord injury. Biochemical Pharmacology, 2011, 82, 1478-1489.	2.0	57
40	Noncovalent Interaction-Driven Stereoselectivity of Copper(II) Complexes with Cyclodextrin Derivatives of <scp>I < /scp>- and <scp>d < /scp>-Carnosine. Inorganic Chemistry, 2011, 50, 4917-4924.</scp></scp>	1.9	22
41	Intramolecular Weak Interactions in the Thermodynamic Stereoselectivity of Copper(II) Complexes with Carnosine–Trehalose Conjugates. Chemistry - A European Journal, 2011, 17, 9448-9455.	1.7	24
42	New glycoside derivatives of carnosine and analogs resistant to carnosinase hydrolysis: Synthesis and characterization of their copper(II) complexes. Journal of Inorganic Biochemistry, 2011, 105, 181-188.	1.5	39
43	Carnosinase Levels in Aging Brain: Redox State Induction and Cellular Stress Response. Antioxidants and Redox Signaling, 2009, 11, 2759-2775.	2.5	55
44	New glycosidic derivatives of histidine-containing dipeptides with antioxidant properties and resistant to carnosinase activity. European Journal of Medicinal Chemistry, 2008, 43, 373-380.	2.6	41
45	Synthesis and antioxidant activity of new homocarnosine \hat{l}^2 -cyclodextrin conjugates. European Journal of Medicinal Chemistry, 2007, 42, 910-920.	2.6	23
46	Copper(II) complexes with β-cyclodextrin–homocarnosine conjugates and their antioxidant activity. Inorganica Chimica Acta, 2007, 360, 945-954.	1.2	26