Kuo-Chun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832736/publications.pdf

Version: 2024-02-01

304743 276875 1,757 53 22 41 citations h-index g-index papers 53 53 53 1127 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Large-Scale Experimental Study of Precast Segmental Unbonded Posttensioned Concrete Bridge Columns for Seismic Regions. Journal of Structural Engineering, 2010, 136, 255-264.	3.4	214
2	Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars. Earthquake Engineering and Structural Dynamics, 2010, 39, 1181-1198.	4.4	164
3	Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. Journal of Materials in Civil Engineering, 2012, 24, 207-215.	2.9	159
4	Largeâ€scale seismic tests of tall concrete bridge columns with precast segmental construction. Earthquake Engineering and Structural Dynamics, 2008, 37, 1449-1465.	4.4	134
5	Performance of a Seismically Isolated Bridge under Near-Fault Earthquake Ground Motions. Journal of Structural Engineering, 2004, 130, 861-868.	3.4	107
6	Real-time monitoring of local scour by using fiber Bragg grating sensors. Smart Materials and Structures, 2005, 14, 664-670.	3 . 5	62
7	Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings. Engineering Structures, 2007, 29, 694-702.	5. 3	56
8	Experimental study and numerical simulation of precast segmental bridge columns with semi-rigid connections. Engineering Structures, 2017, 136, 12-25.	5 . 3	52
9	Evaluation of damping reduction factors for estimating elastic response of structures with high damping. Earthquake Engineering and Structural Dynamics, 2005, 34, 1427-1443.	4.4	51
10	Ground Motion Duration Effects on Hysteretic Behavior of Reinforced Concrete Bridge Columns. Journal of Structural Engineering, 2014, 140, .	3.4	50
11	The dynamic performance of a shear thickening fluid viscous damper. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 983-994.	1.1	47
12	Simplified analysis of midâ€story seismically isolated buildings. Earthquake Engineering and Structural Dynamics, 2011, 40, 119-133.	4.4	46
13	Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers. Bulletin of Earthquake Engineering, 2008, 6, 535-552.	4.1	43
14	Experimental investigation on seismic behavior of scoured bridge pier with pile foundation. Earthquake Engineering and Structural Dynamics, 2015, 44, 849-864.	4.4	43
15	Dynamic behavior of a building structure tested with base and mid-story isolation systems. Engineering Structures, 2012, 42, 420-433.	5. 3	42
16	Seismic Response of Full-Scale Structure with Added Viscoelastic Dampers. Journal of Structural Engineering, 2004, 130, 600-608.	3.4	41
17	An experimental study on the rocking response of bridge piers with spread footing foundations. Earthquake Engineering and Structural Dynamics, 2011, 40, 749-769.	4.4	41
18	Sloped multiâ€roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering and Structural Dynamics, 2014, 43, 1443-1461.	4.4	40

#	Article	IF	CITATIONS
19	An improved capacity spectrum method for ATC-40. Earthquake Engineering and Structural Dynamics, 2003, 32, 2013-2025.	4.4	35
20	State-of-the-Art Review on Determining Prestress Losses in Prestressed Concrete Girders. Applied Sciences (Switzerland), 2020, 10, 7257.	2.5	29
21	Analytical and experimental studies on midstory isolated buildings with modal coupling effect. Earthquake Engineering and Structural Dynamics, 2013, 42, 201-219.	4.4	27
22	Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns. Earthquake Engineering and Structural Dynamics, 2004, 33, 35-48.	4.4	23
23	A new smooth hysteretic model for ductile flexuralâ€dominated reinforced concrete bridge columns. Earthquake Engineering and Structural Dynamics, 2017, 46, 2237-2259.	4.4	19
24	Novel method for identifying residual prestress force in simply supported concrete girder-bridges. Advances in Structural Engineering, 2021, 24, 3238-3251.	2,4	19
25	Compressive Column Load Identification in Steel Space Frames Using Second-Order Deflection-Based Methods. International Journal of Structural Stability and Dynamics, 2018, 18, 1850092.	2.4	16
26	Feasibility Study of Prestress Force Prediction for Concrete Beams Using Second-Order Deflections. International Journal of Structural Stability and Dynamics, 2018, 18, 1850124.	2.4	16
27	Composed analytical models for seismic assessment of reinforced concrete bridge columns. Earthquake Engineering and Structural Dynamics, 2015, 44, 265-281.	4.4	14
28	Analytical and experimental studies on building mass damper system with semi-active control device. Structural Control and Health Monitoring, 2018, 25, e2154.	4.0	13
29	Optimum dynamic characteristic control approach for building mass damper design. Earthquake Engineering and Structural Dynamics, 2018, 47, 872-888.	4.4	13
30	Building mass damper design based on optimum dynamic response control approach. Engineering Structures, 2019, 187, 85-100.	5. 3	13
31	Higher-mode effect on the seismic responses of buildings with viscoelastic dampers. Earthquake Engineering and Engineering Vibration, 2002, 1, 119-129.	2.3	12
32	Life-cycle evaluation of deteriorated structural performance of neutralised reinforced concrete bridges. Structure and Infrastructure Engineering, 2010, 6, 741-751.	3.7	12
33	Two Novel Approaches to Reduce False Alarm Due to Nonâ€Earthquake Events for Onâ€Site Earthquake Early Warning System. Computer-Aided Civil and Infrastructure Engineering, 2016, 31, 535-549.	9.8	12
34	Experimental beyond design and residual performances of fullâ€scale viscoelastic dampers and their empirical modeling. Earthquake Engineering and Structural Dynamics, 2019, 48, 1093-1111.	4.4	11
35	The Artificial Intelligence of Things Sensing System of Real-Time Bridge Scour Monitoring for Early Warning during Floods. Sensors, 2021, 21, 4942.	3.8	11
36	Experimental Testing and Numerical Simulation of Precast Segmental Bridge Piers Constructed with a Modular Methodology. Journal of Bridge Engineering, 2017, 22, .	2.9	9

3

#	Article	IF	CITATIONS
37	Simplified Finite-Element Analysis Method for Axial Compression Behavior of Rectangular Concrete Columns with Interlocking Multispiral Reinforcements. Journal of Structural Engineering, 2020, 146, .	3.4	8
38	Mitigation of micro vibration by viscous dampers. Earthquake Engineering and Engineering Vibration, 2009, 8, 569-582.	2.3	7
39	Damage Evaluation for RC Bridge Piers Using Vibration Measurement. Advances in Structural Engineering, 2015, 18, 1501-1515.	2.4	7
40	Visible Light Communication System for Offshore Wind Turbine Foundation Scour Early Warning Monitoring. Water (Switzerland), 2019, 11, 1486.	2.7	7
41	A simplified method for the evaluation of seismic demands on in-cabinet equipment in motor control center type cabinets in nuclear power plants. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2017, 40. 179-190.	1.1	6
42	Capacityâ€based inelastic displacement spectra for reinforced concrete bridge columns. Earthquake Engineering and Structural Dynamics, 2019, 48, 1536-1555.	4.4	6
43	Application of FBG sensors to strain and temperature monitoring of full scale prestressed concrete bridges. , 0, , .		4
44	Renovated controller designed by genetic algorithms. Earthquake Engineering and Structural Dynamics, 2009, 38, 457-475.	4.4	3
45	Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation. Earthquake and Structures, 2014, 7, 1001-1024.	1.0	3
46	Analysis of Environmental and Typhoon Effects on Modal Frequencies of a Power Transmission Tower. Sensors, 2020, 20, 5169.	3.8	3
47	On the Discussion of the Damping Reduction Factors in the Constant Acceleration Region for ATC-40 and FEMA-273. Earthquake Spectra, 2003, 19, 1001-1006.	3.1	2
48	Optimization of structural control via a smart NEUROâ€FBG control system. Earthquake Engineering and Structural Dynamics, 2008, 37, 427-445.	4.4	2
49	Seismic evaluation of reinforced concrete bridges using capacityâ€based inelastic displacement spectra. Earthquake Engineering and Structural Dynamics, 2021, 50, 1845-1863.	4.4	2
50	Prediction of Smooth Hysteretic Model Parameters Using Support Vector Regression. Multiscale Science and Engineering, 2021, 3, 129-144.	1.7	1
51	Special issue on Typhoon Morakot. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 557-557.	1.1	0
52	Capacity-Based Inelastic Displacement Spectra for Seismic Evaluation and Design of Reinforced Concrete Bridges., 2019,, 329-350.		0
53	A Simplified Finite Element Analysis Method for Axial Compression Behavior of Rectangular Concrete Columns with Interlocking Multi-spiral Reinforcements. , 2019, , .		0