Daniela Petti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832622/publications.pdf

Version: 2024-02-01

68 1,939 21 43 papers citations h-index g-index

68 68 68 2887
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Review on magnonics with engineered spin textures. Journal Physics D: Applied Physics, 2022, 55, 293003.	2.8	15
2	Epitaxy and controlled oxidation of chromium ultrathin films on ferroelectric BaTiO3 templates. Journal of Crystal Growth, 2021, 558, 126012.	1.5	0
3	The 2021 Magnonics Roadmap. Journal of Physics Condensed Matter, 2021, 33, 413001.	1.8	287
4	Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nature Electronics, 2021, 4, 740-747.	26.0	62
5	Electrical readout of the antiferromagnetic state of IrMn through anomalous Hall effect. Journal of Applied Physics, 2020, 128, 053904.	2.5	5
6	Building a half-adder based on spin waves. Nature Electronics, 2020, 3, 736-737.	26.0	4
7	Temperature Dependence of the Magnetic Properties of IrMn/CoFeB/Ru/CoFeB Exchange Biased Synthetic Antiferromagnets. Materials, 2020, 13, 387.	2.9	8
8	Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets. Advanced Materials, 2020, 32, e1906439.	21.0	58
9	Plasmon-Enhanced Second Harmonic Sensing. Journal of Physical Chemistry C, 2018, 122, 11475-11481.	3.1	15
10	Electrical and magnetic properties of hemozoin nanocrystals. Applied Physics Letters, 2018, 113, .	3.3	8
11	On-Chip Magnetophoretic Concentration of Malaria-Infected Red Blood Cells and Hemozoin Nanocrystals. , 2018, , .		1
12	Biocompatibility of a Magnetic Tunnel Junction Sensor Array for the Detection of Neuronal Signals in Culture. Frontiers in Neuroscience, 2018, 12, 909.	2.8	15
13	Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Communications Physics, $2018,1,.$	5.3	74
14	Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems. Applied Physics Letters, 2018, 113, .	3.3	14
15	Localized mechanical stimulation of single cells with engineered spatio-temporal profile. Lab on A Chip, 2018, 18, 2955-2965.	6.0	6
16	Plasmon-enhanced second-harmonic sensing on a microfluidic chip. , 2018, , .		1
17	Thermal scanning probe lithography: from spintronics to biomedical applications. , 2018, , .		0
18	Spin textures patterned via thermally assisted magnetic scanning probe lithography for magnonics. , 2018, , .		0

#	Article	IF	Citations
19	Towards a magnetoresistive platform for neural signal recording. AIP Advances, 2017, 7, .	1.3	5
20	Nanopatterning spin-textures: A route to reconfigurable magnonics. AIP Advances, 2017, 7, 055601.	1.3	14
21	Highly Sensitive Magnetic Array-based Platform for Neuronal Signal Recording. Procedia Technology, 2017, 27, 292-294.	1.1	0
22	Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors. Sensors and Actuators B: Chemical, 2017, 242, 280-287.	7.8	45
23	Magnetic Tunnel Junction Based Chip to Detect the Magnetic Field of Neuronal Signals: A Platform for In Vitro Studies. Proceedings (mdpi), 2017, 1, .	0.2	0
24	Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities. Sensors, 2016, 16, 1030.	3.8	27
25	On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback. Small, 2016, 12, 921-929.	10.0	15
26	Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology, 2016, 27, 315302.	2.6	26
27	Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells. Lab on A Chip, 2016, 16, 2882-2890.	6.0	12
28	Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotechnology, 2016, 11, 545-551.	31.5	134
29	Domain wall engineering through exchange bias. Journal of Magnetism and Magnetic Materials, 2016, 400, 230-235.	2.3	18
30	Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology. Journal of Applied Physics, 2015, 117, 178317.	2.5	5
31	Switching magnetic order at an Fe/BaTiO <inf>3</inf> interface on and off: Impact on hybrid magnetic-ferroelectric tunnel junctions., 2015,,.		0
32	A 12-channel dual-lock-in platform for magneto-resistive DNA detection with ppm resolution. , 2014, , .		8
33	Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO3 interface (invited). Journal of Applied Physics, 2014, 115, 172604.	2.5	10
34	Closed loop microfluidic platform based on domain wall magnetic conduits: a novel tool for biology and medicine. Materials Research Society Symposia Proceedings, 2014, 1686, 1.	0.1	0
35	Electric control of magnetism at the Fe/BaTiO3 interface. Nature Communications, 2014, 5, 3404.	12.8	179
36	Structural comparison between MgO/Fe(001) and MgO/Fe(001) $\hat{a} \in \text{``p(1$\tilde{A}$-1)O}$ interfaces for magnetic tunneling junctions: An Auger electron diffraction study. Applied Surface Science, 2014, 305, 167-172.	6.1	3

#	Article	IF	CITATIONS
37	Towards the impedimetric tracking of single magnetically trailed microparticles. , 2014, , .		2
38	Photolithographic bio-patterning of magnetic sensors for biomolecular recognition. Sensors and Actuators B: Chemical, 2014, 200, 39-46.	7.8	21
39	Bias-controlled ultrafast demagnetization in magnetic tunnel junctions. Physical Review B, 2014, 89, .	3.2	12
40	Disentangling electrons and lattice nonlinear optical response in metal-dielectric Bragg filters. Physical Review B, 2014, 89, .	3.2	17
41	Functionalization of gold surfaces with copoly(DMA-NAS-MAPS) by dip coating: Surface characterization and hybridization tests. Sensors and Actuators B: Chemical, 2014, 190, 234-242.	7.8	12
42	Optimization of the bio-functionalized area of magnetic biosensors. European Physical Journal B, 2013, 86, 1.	1.5	5
43	Conditions for efficient on-chip magnetic bead detection via magnetoresistive sensors. Biosensors and Bioelectronics, 2013, 47, 213-217.	10.1	28
44	Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Applied Physics Letters, 2013, 102, .	3.3	56
45	Epitaxial Fe/MgO/Ge spin-photodiodes for integrated detection of light helicity at room temperature. Journal of Applied Physics, 2012, 111, 07C312.	2.5	6
46	Controlled Release of Doxorubicin Loaded within Magnetic Thermo-responsive Nanocarriers under Magnetic and Thermal Actuation in a Microfluidic Channel. ACS Nano, 2012, 6, 10535-10545.	14.6	91
47	Geâ€Based Spinâ€Photodiodes for Roomâ€Temperature Integrated Detection of Photon Helicity. Advanced Materials, 2012, 24, 3037-3041.	21.0	40
48	Effect of Au proximity on the LSMO surface: An ab initio study. Journal of Magnetism and Magnetic Materials, 2012, 324, 2659-2663.	2.3	5
49	On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions. Applied Physics Letters, 2011, 98, 073702.	3.3	19
50	Electric field control of magnetic anisotropies and magnetic coercivity in Fe/BaTiO3(001) heterostructures. Applied Physics Letters, 2011, 98, .	3.3	82
51	Sharp Fe/MgO/Ge(001) epitaxial heterostructures for tunneling junctions. Journal of Applied Physics, 2011, 109, .	2.5	19
52	Chemical and electronic properties of Fe/MgO/Ge heterostructures for spin electronics. Journal of Physics: Conference Series, 2011, 292, 012010.	0.4	11
53	Aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy studies of epitaxial Fe/MgO/(001)Ge heterostructures. Journal of Materials Science, 2011, 46, 4157-4161.	3.7	2
54	Epitaxial growth of Fe/MgO/Ge(001) heterostructures. Microelectronic Engineering, 2011, 88, 530-533.	2.4	10

#	Article	IF	Citations
55	Epitaxial growth of Fe/BaTiO3 heterostructures. Thin Solid Films, 2011, 519, 5804-5807.	1.8	20
56	Bandstructure line-up of epitaxial Fe/MgO/Ge heterostructures: A combined x-ray photoelectron spectroscopy and transport study. Applied Physics Letters, 2011, 98, 032104.	3.3	22
57	Band alignment at Cu2O/La0.7Sr0.3MnO3 interface: A combined experimental-theoretical determination. Applied Physics Letters, 2010, 97, .	3.3	11
58	Onâ€Chip Manipulation of Proteinâ€Coated Magnetic Beads via Domainâ€Wall Conduits. Advanced Materials, 2010, 22, 2706-2710.	21.0	131
59	Activation of Zr–Co–rare earth getter films: An XPS study. Applied Surface Science, 2010, 256, 6291-6296.	6.1	42
60	Near-room-temperature control of magnetization in field effect devices based on La0.67Sr0.33MnO3 thin films. Journal of Applied Physics, 2010, 108, 113906.	2.5	27
61	Effects of Au nanoparticles on the magnetic and transport properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mr< td=""><td>/><<mark>ीती</mark>ml:m</td><td>n>0.67m</td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	/>< <mark>ीती</mark> ml:m	n>0.67m
62	MgO/Fe(001) and <pre>mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <pre><mml:mtext> MgO </mml:mtext></pre>/mml:mtext> <pre><mml:mtext> Fe </mml:mtext></pre>/mml:mtext for magnetic tu. Physical Review B, 2009, 80, .</pre>	:xt 3.2 mml:	mn 201 w> <mml< td=""></mml<>
63	Manipulation at the nano-scale of single magnetic particles via domain walls conduits. , 2009, , .		0
64	X-ray photoemission study of the Auâ^•La0.67Sr0.33MnO3 interface formation. Journal of Applied Physics, 2008, 103, .	2.5	9
65	Influence of Au electrodes on the properties of SrTiO3/La0.67Sr0.33MnO3/Au magnetic tunnel junctions studied by bberration-corrected STEM-EELS. Microscopy and Microanalysis, 2008, 14, 1392-1393.	0.4	0
66	Proximity effects induced by a gold layer on La0.67Sr0.33MnO3 thin films. Applied Physics Letters, 2007, 91, .	3.3	18
67	Oxygen vacancies and induced changes in the electronic and magnetic structures of LaO.66SrO.33MnO3: A combinedab initioand photoemission study. Physical Review B, 2007, 75, .	3.2	78
68	Decrease of the Curie temperature in La0.67Sr0.33MnO3 thin films induced by Au capping. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 93-96.	3.5	9