Sung Min Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832607/publications.pdf

Version: 2024-02-01

65 3,864 24 62
papers citations h-index g-index

67 67 5279
all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. Langmuir, 2022, 38, 1550-1559.	1.6	15
2	Effect of <i>N</i> -Methylation on Dopamine Surface Chemistry. Langmuir, 2022, 38, 6404-6410.	1.6	5
3	Coordination-driven antifouling spray coating using a sulfated polysaccharide Fucoidan. Progress in Organic Coatings, 2022, 169, 106916.	1.9	3
4	Effect of Molecular Weights on Metalâ€Mediated Grafting of Sulfobetaine Polymers onto Solid Surfaces for Nonâ€Biofouling Applications. Macromolecular Bioscience, 2022, 22, .	2.1	3
5	Plant-inspired quercetin thin films: universal coatings and their postfunctionalization for non-biofouling applications. New Journal of Chemistry, 2021, 45, 7533-7541.	1.4	5
6	Universal Surface Coating with a Non-Phenolic Molecule, Sulfonated Pyrene. Langmuir, 2021, 37, 7227-7236.	1.6	3
7	Spray Coating of 2―and 3â€D Solid Substrates Using a Sulfated Polysaccharide for Marine Antifouling Applications. Macromolecular Materials and Engineering, 2021, 306, 2100423.	1.7	8
8	Ultralow fouling of fibrinogen and human platelets on ulvan multilayer-coated solid surfaces. Journal of Industrial and Engineering Chemistry, 2020, 82, 228-233.	2.9	7
9	Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules, 2020, 21, 5086-5092.	2.6	19
10	Catecholâ€conjugated Dextran for Marine Antifouling Applications: The Adverse Effects of High Catechol Content. Bulletin of the Korean Chemical Society, 2020, 41, 1068-1072.	1.0	9
11	Zr(IV) Coordination Chemistry for Cell-Repellent Alginate Coatings: The Effect of Surface Functional Groups. Langmuir, 2020, 36, 5192-5197.	1.6	14
12	Mussel-Inspired, One-Step Thiol Functionalization of Solid Surfaces. Langmuir, 2020, 36, 1608-1614.	1.6	10
13	Antibacterial Film Formation through Iron(III) Complexation and Oxidation-Induced Cross-Linking of <i>OEG</i> -DOPA. Langmuir, 2019, 35, 14465-14472.	1.6	10
14	Formation of Zirconium(IV)–Heparin Complex Multilayers on Solid Surfaces for Longâ€Lasting Antiplatelet Application. Macromolecular Bioscience, 2019, 19, 1900154.	2.1	5
15	Enhanced Adhesion of Fish Ovarian Germline Stem Cells on Solid Surfaces by Mussel-Inspired Polymer Coating. Marine Drugs, 2019, 17, 11.	2.2	3
16	Photochemical Control of Polydopamine Coating in an Aprotic Organic Solvent. Asian Journal of Organic Chemistry, 2019, 8, 1610-1612.	1.3	4
17	4-(3-Aminopropyl)-benzene-1,2-diol: An Improved Material-Independent Surface-Coating Reagent Compared to Dopamine. Langmuir, 2019, 35, 6898-6904.	1.6	8
18	Oxidation-Mediated, Zwitterionic Polydopamine Coatings for Marine Antifouling Applications. Langmuir, 2019, 35, 1227-1234.	1.6	59

#	Article	IF	Citations
19	Development of Freezeâ€resistant Aluminum Surfaces by Tannic Acid Coating and Subsequent Immobilization of Antifreeze Proteins. Bulletin of the Korean Chemical Society, 2018, 39, 559-562.	1.0	5
20	Facile and Robust Anchoring of CaCO ₃ Crystals on Solid Substrates by Tannic Acid Coating. Bulletin of the Korean Chemical Society, 2018, 39, 691-694.	1.0	0
21	Facile Construction of Robust Multilayered PEG Films on Polydopamine-Coated Solid Substrates for Marine Antifouling Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7626-7631.	4.0	63
22	Marine Fouling Resistance of Ulvanâ€grafted Solid Surface. Bulletin of the Korean Chemical Society, 2018, 39, 1459-1462.	1.0	4
23	Multipurpose Antifouling Coating of Solid Surfaces with the Marineâ€Derived Polymer Fucoidan. Macromolecular Bioscience, 2018, 18, e1800137.	2.1	27
24	Systematic Study of Functionalizable, Nonâ€Biofouling Agarose Films with Protein and Cellular Patterns on Glass Slides. Chemistry - an Asian Journal, 2017, 12, 846-852.	1.7	8
25	Modulation of Heterotypic and Homotypic Cell–Cell Interactions via Zwitterionic Lipid Masks. Advanced Healthcare Materials, 2017, 6, 1700063.	3.9	1
26	Formation of Turmeric-Based Thin Films: Universal, Transparent Coatings. Langmuir, 2017, 33, 3639-3646.	1.6	16
27	Superhydrophilic Conversion of Stainless Steel Surfaces by Biomimetic Silica Coating and Its Effect on Marine Fouling. Bulletin of the Korean Chemical Society, 2017, 38, 972-975.	1.0	4
28	Effect of Catechol Content in Catechol-Conjugated Dextrans on Antiplatelet Performance. Polymers, 2017, 9, 376.	2.0	4
29	Musselâ€Inspired Approach to Constructing Robust Multilayered Alginate Films for Antibacterial Applications. Advanced Functional Materials, 2016, 26, 4099-4105.	7.8	69
30	Marine Antifouling Surface Coatings Using Tannic Acid and Poly(<i>N</i> â€vinylpyrrolidone). Bulletin of the Korean Chemical Society, 2016, 37, 404-407.	1.0	7
31	Sprayable Ultrafast Polydopamine Surface Modifications. Advanced Materials Interfaces, 2016, 3, 1500857.	1.9	99
32	Cytocompatible Polymer Grafting from Individual Living Cells by Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, 15532-15535.	1.6	11
33	Lubrication of Stainless Steel Surfaces for Marine Antifouling Applications. Bulletin of the Korean Chemical Society, 2016, 37, 2087-2090.	1.0	1
34	Artificial Spores: Cytocompatible Coating of Living Cells with Plantâ€Derived Pyrogallol. Chemistry - an Asian Journal, 2016, 11, 3183-3187.	1.7	25
35	Cytocompatible Polymer Grafting from Individual Living Cells by Atom†ransfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, 15306-15309.	7.2	114
36	Adhesive heparin coating for marine antifouling applications. Macromolecular Research, 2016, 24, 645-649.	1.0	14

#	Article	IF	CITATIONS
37	Enhanced Adhesion of Marine Diatoms on a Solid Substrate by Tannic Acid Coating. Bulletin of the Korean Chemical Society, 2015, 36, 9-10.	1.0	4
38	One-step functionalization of zwitterionic poly[(3-(methacryloylamino)propyl)dimethyl(3-sulfopropyl)ammonium hydroxide] surfaces by metal–polyphenol coating. Chemical Communications, 2015, 51, 5340-5342.	2.2	37
39	Versatile, Tannic Acid-Mediated Surface PEGylation for Marine Antifouling Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6412-6416.	4.0	140
40	Non-Biofouling Polymeric Thin Films on Solid Substrates. Journal of Nanoscience and Nanotechnology, 2014, 14, 1231-1252.	0.9	32
41	Reversible Layerâ€by‣ayer Deposition on Solid Substrates Inspired by Mussel Byssus Cuticle. Chemistry - an Asian Journal, 2014, 9, 63-66.	1.7	57
42	Pyrogallol 2â€Aminoethane: A Plant Flavonoidâ€Inspired Molecule for Materialâ€Independent Surface Chemistry. Advanced Materials Interfaces, 2014, 1, 1400113.	1.9	104
43	Binding behaviors of protein on spatially controlled poly[oligo(ethylene glycol) methacrylate] brushes grafted from mixed self-assembled monolayers on gold. Chemical Communications, 2014, 50, 5291.	2.2	16
44	Stability-enhanced polydopamine coatings on solid substrates by iron(III) coordination. Progress in Organic Coatings, 2014, 77, 1336-1339.	1.9	58
45	Fe(III)/Polydopamine-Mediated Capture and Release of Catecholic Compounds. Bulletin of the Korean Chemical Society, 2014, 35, 2828-2830.	1.0	0
46	Chemically stable poly(norepinephrine) coatings on solid substrates byÂpost-oxidation. Polymer Degradation and Stability, 2013, 98, 1271-1273.	2.7	19
47	Polymeric Functionalization of Cyclic Olefin Copolymer Surfaces with Nonbiofouling Poly(oligo(Ethylene Glycol) Methacrylate). Asian Journal of Organic Chemistry, 2013, 2, 568-571.	1.3	15
48	Mussel- and Diatom-Inspired Micropattern Generation of Silica on a Solid Substrate. Bulletin of the Korean Chemical Society, 2013, 34, 353-354.	1.0	3
49	Surface Modification of Highly Ordered Pyrolytic Graphite (HOPG) by a Mussel-Inspired Poly(norepinephrine) Coating: Characterizations and Cell Adhesion Test. Bulletin of the Korean Chemical Society, 2013, 34, 960-962.	1.0	8
50	Control of Cell Adhesion on a Superhydrophobic Surface by Polydopamine Coating. Bulletin of the Korean Chemical Society, 2013, 34, 2525-2527.	1.0	7
51	Mussel- and Diatom-Inspired Silica Coating on Separators Yields Improved Power and Safety in Li-Ion Batteries. Chemistry of Materials, 2012, 24, 3481-3485.	3.2	185
52	Oneâ€Step Multipurpose Surface Functionalization by Adhesive Catecholamine. Advanced Functional Materials, 2012, 22, 2949-2955.	7.8	436
53	Polydopamine Microfluidic System toward a Twoâ€Dimensional, Gravityâ€Driven Mixing Device. Angewandte Chemie - International Edition, 2012, 51, 6126-6130.	7.2	123
54	Enhancement of Blood Compatibility of Poly(urethane) Substrates by Mussel-Inspired Adhesive Heparin Coating. Bioconjugate Chemistry, 2011, 22, 1264-1269.	1.8	116

#	Article	IF	CITATIONS
55	Mussel-Inspired Encapsulation and Functionalization of Individual Yeast Cells. Journal of the American Chemical Society, 2011, 133, 2795-2797.	6.6	378
56	Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Musselâ€Inspired Chemistry. Advanced Functional Materials, 2011, 21, 108-112.	7.8	409
57	Osteoconductive conjugation of bone morphogenetic protein-2 onto titanium/titanium oxide surfaces coated with non-biofouling poly(poly(ethylene glycol) methacrylate). Colloids and Surfaces B: Biointerfaces, 2010, 75, 385-389.	2.5	33
58	Oneâ€Step Modification of Superhydrophobic Surfaces by a Musselâ€Inspired Polymer Coating. Angewandte Chemie - International Edition, 2010, 49, 9401-9404.	7.2	408
59	Specific binding of streptavidin onto the nonbiofouling titanium/titanium oxide surface through surface-initiated, atom transfer radical polymerization and bioconjugation of biotin. Macromolecular Research, 2009, 17, 174-180.	1.0	12
60	Bioconjugation of poly(poly(ethylene glycol) methacrylate)-coated iron oxide magnetic nanoparticles for magnetic capture of target proteins. Macromolecular Research, 2009, 17, 259-264.	1.0	33
61	Norepinephrine: Material-Independent, Multifunctional Surface Modification Reagent. Journal of the American Chemical Society, 2009, 131, 13224-13225.	6.6	298
62	Biomimetic Approach to the Formation of Magnetic Nanoparticle/Silica Core/Shell Structures. Journal of Nanoscience and Nanotechnology, 2008, 8, 5347-5350.	0.9	11
63	Biomimetic approach to the formation of gold nanoparticle/silica core/shell structures and subsequent bioconjugation. Nanotechnology, 2006, 17, 4719-4725.	1.3	44
64	Formation of Thermoresponsive Gold Nanoparticle/PNIPAAm Hybrids by Surface-Initiated, Atom Transfer Radical Polymerization in Aqueous Media. Macromolecular Chemistry and Physics, 2005, 206, 1941-1946.	1.1	153
65	Formation of carbon nanotube/glucose-carrying polymer hybrids by surface-initiated, atom transfer radical polymerization. Macromolecular Research, 2005, 13, 356-361.	1.0	20