Zaiyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832600/publications.pdf Version: 2024-02-01

ZAIVIL WANC

#	Article	IF	CITATIONS
1	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. CCS Chemistry, 2022, 4, 2249-2257.	7.8	14
2	Autonomous Visualization of Damage in Polymers by Metalâ€Free Polymerizations of Microencapsulated Activated Alkynes. Advanced Science, 2022, 9, e2105395.	11.2	8
3	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
4	15.4% Efficiency all-polymer solar cells. Science China Chemistry, 2021, 64, 408-412.	8.2	83
5	The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nature Communications, 2021, 12, 332.	12.8	140
6	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
7	BioAlEgens derived from rosin: how does molecular motion affect their photophysical processes in solid state?. Nature Communications, 2021, 12, 1773.	12.8	62
8	A Conjugated Polymeric Supramolecular Network with Aggregationâ€Induced Emission Enhancement: An Efficient Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie, 2020, 132, 9994-9999.	2.0	22
9	A Conjugated Polymeric Supramolecular Network with Aggregationâ€Induced Emission Enhancement: An Efficient Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie - International Edition, 2020, 59, 9908-9913.	13.8	159
10	Functionalized alkenyl side chains: a feasible strategy to improve charge transport and photovoltaic performance. Journal of Materials Chemistry C, 2020, 8, 2171-2177.	5.5	4
11	Molecular Motions in AlEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding. Journal of the American Chemical Society, 2020, 142, 14608-14618.	13.7	62
12	Frontispiz: A Conjugated Polymeric Supramolecular Network with Aggregationâ€Induced Emission Enhancement: An Efficient Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie, 2020, 132, .	2.0	0
13	Understanding the Effect of End Group Halogenation in Tuning Miscibility and Morphology of Highâ€Performance Small Molecular Acceptors. Solar Rrl, 2020, 4, 2000250.	5.8	63
14	Frontispiece: A Conjugated Polymeric Supramolecular Network with Aggregationâ€Induced Emission Enhancement: An Efficient Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
15	Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Smallâ€Molecule Acceptors. Advanced Functional Materials, 2020, 30, 2000383.	14.9	55
16	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	10.3	39
17	Side chain engineering of polymer acceptors for all-polymer solar cells with enhanced efficiency. Journal of Materials Chemistry C, 2020, 8, 4012-4020.	5.5	13
18	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	11.4	48

ZAIYU WANG

#	Article	IF	CITATIONS
19	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
20	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40
21	Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 6283-6291.	8.0	49
22	AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9, 3223-3248.	10.0	116
23	Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1802686.	19.5	51
24	From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. Journal of the American Chemical Society, 2018, 140, 1549-1556.	13.7	145
25	A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07â€V in Solutionâ€Processable Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 558-562.	2.7	3
26	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 12913-12920.	8.0	21
27	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	10.3	19
28	Indacenodithiophene-based wide bandgap copolymers for high performance single-junction and tandem polymer solar cells. Nano Energy, 2017, 33, 313-324.	16.0	52
29	High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor. Journal of the American Chemical Society, 2017, 139, 2387-2395.	13.7	404
30	Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602552.	19.5	97
31	Enhancing Performance of Largeâ€Area Organic Solar Cells with Thick Film via Ternary Strategy. Small, 2017, 13, 1700388.	10.0	113
32	Evolution of morphology and open-circuit voltage in alloy-energy transfer coexisting ternary organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9859-9866.	10.3	30
33	Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh ₂) ₂ /EP-PDI blend system via thermal annealing. Journal of Materials Chemistry C, 2017, 5, 6842-6851.	5.5	13
34	Enhancing the Photovoltaic Performance via Vertical Phase Distribution Optimization in Small Molecule:PC ₇₁ BM Blends. Advanced Energy Materials, 2017, 7, 1701548.	19.5	57
35	A Crossâ€Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 226-232.	14.9	41
36	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	12.8	549

ZAIYU WANG

#	Article	IF	CITATIONS
37	Indenothiopheneâ€Based Wide Bandgap Copolymer for Polymer Fullerene Solar Cells with 9.01% Efficiency and 1.0 V Open Circuit Voltage. Advanced Electronic Materials, 2016, 2, 1600340.	5.1	28
38	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of As ast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152
39	10.8% Efficiency Polymer Solar Cells Based on PTB7â€Th and PC ₇₁ BM via Binary Solvent Additives Treatment. Advanced Functional Materials, 2016, 26, 6635-6640.	14.9	279
40	Acceptor End apped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	21.0	87
41	Optimized "Alloyâ€Parallel―Morphology of Ternary Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502456.	19.5	79
42	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	11.2	43
43	Conjugated Polymer–Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 8176-8183.	13.7	518
44	Incorporation of Fluorine onto Different Positions of Phenyl Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene Unit: Influence on Photovoltaic Properties. Macromolecules, 2015, 48, 4347-4356.	4.8	50
45	A planar electron acceptor for efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 3215-3221.	30.8	307
46	Rational selection of solvents and fine tuning of morphologies toward highly efficient polymer solar cells fabricated using green solvents. RSC Advances. 2015. 5. 69567-69572.	3.6	37

cells fabricated using green solvents. RSC Advances, 2015, 5, 69567-69572.