
Tapio Salmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 2014, 114, 1909-1971.	23.0	367
2	Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chemical Reviews, 2011, 111, 5638-5666.	23.0	350
3	Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes. Catalysis Reviews - Science and Engineering, 2007, 49, 197-340.	5.7	250
4	Asymmetric Heterogeneous Catalysis: Science and Engineering. Catalysis Reviews - Science and Engineering, 2005, 47, 175-256.	5.7	231
5	Deactivation of postcombustion catalysts, a review. Fuel, 2004, 83, 395-408.	3.4	176
6	Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chemical Engineering Science, 1997, 52, 3369-3381.	1.9	136
7	Ring opening of decalin over zeolitesI. Activity and selectivity of proton-form zeolites. Journal of Catalysis, 2004, 222, 65-79.	3.1	131
8	Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chemistry, 2014, 16, 2320.	4.6	131
9	Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chemistry, 2007, 9, 1229.	4.6	126
10	Ring opening of decalin over zeolitesII. Activity and selectivity of platinum-modified zeolites. Journal of Catalysis, 2004, 227, 313-327.	3.1	123
11	Review on hydrodynamics and mass transfer in minichannel wall reactors with gas–liquid Taylor flow. Chemical Engineering Research and Design, 2016, 113, 304-329.	2.7	119
12	Kinetics of nitrate reduction in monolith reactor. Chemical Engineering Science, 1994, 49, 5763-5773.	1.9	111
13	Stationary and transient kinetics of the high temperature water-gas shift reaction. Applied Catalysis A: General, 1996, 137, 349-370.	2.2	99
14	Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Applied Catalysis B: Environmental, 2018, 230, 77-90.	10.8	99
15	Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Applied Catalysis A: General, 2000, 196, 143-155.	2.2	96
16	Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 2004, 225, 155-169.	3.1	93
17	Deoxygenation of dodecanoic acid under inert atmosphere. Fuel, 2010, 89, 2033-2039.	3.4	93
18	Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide: Circumventing Thermodynamic Limitations. Industrial & Engineering Chemistry Research, 2010, 49, 9609-9617.	1.8	88

Tapio Salmi

#	Article	IF	CITATIONS
19	Kinetics of esterification of propanoic acid with methanol over a fibrous polymer-supported sulphonic acid catalyst. Applied Catalysis A: General, 2002, 228, 253-267.	2.2	87
20	Aqueous phase reforming of xylitol and sorbitol: Comparison and influence of substrate structure. Applied Catalysis A: General, 2012, 435-436, 172-180.	2.2	86
21	Supported ionic liquidscatalysts for fine chemicals: citral hydrogenation. Green Chemistry, 2006, 8, 197-205.	4.6	83
22	Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon. Energy & Fuels, 2011, 25, 2815-2825.	2.5	82
23	Chemisorption and TPD studies of hydrogen on Ni/Al2O3. Applied Catalysis A: General, 1996, 144, 177-194.	2.2	80
24	Liquid phase hydrogenation of citral: suppression of side reactions. Applied Catalysis A: General, 2002, 237, 181-200.	2.2	78
25	Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using <scp>P</scp> rileschajew method. AICHE Journal, 2016, 62, 726-741.	1.8	78
26	Liquid phase hydrogenation of nitrobenzene. Applied Catalysis A: General, 2015, 499, 66-76.	2.2	74
27	From renewable raw materials to high value-added fine chemicals—Catalytic hydrogenation and oxidation of d-lactose. Catalysis Today, 2007, 121, 92-99.	2.2	73
28	Selective hydrogenation of fatty acids to alcohols over highly dispersed ReO /TiO2 catalyst. Journal of Catalysis, 2015, 328, 197-207.	3.1	72
29	Kinetics of toluene hydrogenation on a supported nickel catalyst. Industrial & Engineering Chemistry Research, 1993, 32, 34-42.	1.8	69
30	Enantioselective Hydrogenation of 1-Phenyl-1,2-propanedione. Journal of Catalysis, 2001, 204, 281-291.	3.1	67
31	Catalytic Deoxygenation of Tall Oil Fatty Acids Over a Palladium-Mesoporous Carbon Catalyst: A New Source of Biofuels. Topics in Catalysis, 2010, 53, 1274-1277.	1.3	65
32	Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor – Effects of wood particle size. Bioresource Technology, 2013, 143, 212-220.	4.8	65
33	Comparison of polyvinylbenzene and polyolefin supported sulphonic acid catalysts in the esterification of acetic acid. Applied Catalysis A: General, 1999, 184, 25-32.	2.2	64
34	Sugar hydrogenation over a Ru/C catalyst. Journal of Chemical Technology and Biotechnology, 2011, 86, 658-668.	1.6	64
35	lsomerization of linoleic acid over supported metal catalysts. Applied Catalysis A: General, 2003, 245, 257-275.	2.2	63
36	Xylose hydrogenation: kinetic and NMR studies of the reaction mechanisms. Catalysis Today, 1999, 48, 73-81.	2.2	62

#	Article	IF	CITATIONS
37	Kinetics of Aqueous Extraction of Hemicelluloses from Spruce in an Intensified Reactor System. Industrial & Engineering Chemistry Research, 2011, 50, 3818-3828.	1.8	61
38	Structure sensitivity in catalytic hydrogenation of glucose over ruthenium. Catalysis Today, 2015, 241, 195-199.	2.2	60
39	Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor. International Journal of Molecular Sciences, 2008, 9, 1665-1675.	1.8	57
40	Acid hydrolysis of xylan. Catalysis Today, 2016, 259, 376-380.	2.2	57
41	Kinetics of the Recovery of Active Anthraquinones. Industrial & Engineering Chemistry Research, 2006, 45, 986-992.	1.8	56
42	Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: A kinetic and thermal study. Chemical Engineering Journal, 2018, 346, 271-280.	6.6	56
43	Aqueous-phase reforming of xylitol over Pt/C and Pt/TiC-CDC catalysts: catalyst characterization and catalytic performance. Catalysis Science and Technology, 2014, 4, 387-401.	2.1	54
44	Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition. Catalysis Today, 2014, 223, 97-107.	2.2	52
45	Epoxidation of vegetable oils under microwave irradiation. Chemical Engineering Research and Design, 2014, 92, 1495-1502.	2.7	51
46	lonic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohydrate Polymers, 2016, 135, 341-348.	5.1	51
47	Influence of ringâ€opening reactions on the kinetics of cottonseed oil epoxidation. International Journal of Chemical Kinetics, 2018, 50, 726-741.	1.0	50
48	The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO. Catalysis Letters, 2011, 141, 1254-1261.	1.4	49
49	Kinetics of toluene hydrogenation on Ni/Al2O3 catalyst. Chemical Engineering Science, 1993, 48, 3813-3828.	1.9	48
50	Catalytic Pyrolysis of Pine Biomass Over H-Beta Zeolite in a Dual-Fluidized Bed Reactor: Effect of Space Velocity on the Yield and Composition of Pyrolysis Products. Topics in Catalysis, 2011, 54, 941-948.	1.3	48
51	Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renewable Energy, 2015, 74, 369-378.	4.3	48
52	Pd-Au and Pd-Pt catalysts for the direct synthesis of hydrogen peroxide in absence of selectivity enhancers. Applied Catalysis A: General, 2013, 468, 160-174.	2.2	47
53	Spruce Hemicellulose for Chemicals Using Aqueous Extraction: Kinetics, Mass Transfer, and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6341-6350.	1.8	47
54	Modelling of kinetics and mass transfer in the hydrogenation of xylose over Raney nickel catalyst. Journal of Chemical Technology and Biotechnology, 1999, 74, 655-662.	1.6	46

#	Article	IF	CITATIONS
55	Kinetics of the catalytic hydrogenation of d-fructose over a CuO-ZnO catalyst. Chemical Engineering Journal, 2005, 115, 93-102.	6.6	45
56	Epoxidation of oleic acid under conventional heating and microwave radiation. Chemical Engineering and Processing: Process Intensification, 2016, 102, 70-87.	1.8	45
57	Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules, 2018, 23, 946.	1.7	45
58	Selective Hydrolysis of Arabinogalactan into Arabinose and Galactose Over Heterogeneous Catalysts. Catalysis Letters, 2011, 141, 408-412.	1.4	44
59	Synthesis and characterization of solid base mesoporous and microporous catalysts: Influence of the support, structure and type of base metal. Microporous and Mesoporous Materials, 2012, 152, 71-77.	2.2	44
60	Kinetic modelling of a solid–liquid reaction: reduction of ferric iron to ferrous iron with zinc sulphide. Chemical Engineering Science, 2004, 59, 919-930.	1.9	43
61	Liquid-phase hydrogenation of citral over an immobile silica fibre catalyst. Applied Catalysis A: General, 2000, 196, 93-102.	2.2	42
62	Kinetics of Cinnamaldehyde Hydrogenation by Supported Ionic Liquid Catalysts (SILCA). Industrial & Engineering Chemistry Research, 2009, 48, 10335-10342.	1.8	42
63	Microreactors as tools in kinetic investigations: Ethylene oxide formation on silver catalyst. Chemical Engineering Science, 2013, 87, 306-314.	1.9	42
64	Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction. ChemSusChem, 2014, 7, 2947-2953.	3.6	42
65	Hemicellulose extraction by hot pressurized water pretreatment at 160 źC for 10 different woods: Yield and molecular weight. Journal of Supercritical Fluids, 2018, 133, 716-725.	1.6	42
66	Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite. Journal of Molecular Catalysis A, 2004, 217, 145-154.	4.8	41
67	From Kinetic Study to Thermal Safety Assessment: Application to Peroxyformic Acid Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 13999-14007.	1.8	40
68	Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1449-1458.	2.7	40
69	Kinetic modelling of Prileschajew epoxidation of oleic acid under conventional heating and microwave irradiation. Chemical Engineering Science, 2019, 199, 426-438.	1.9	39
70	In-situ ultrasonic catalyst rejuvenation in three-phase hydrogenation of xylose. Chemical Engineering Science, 1999, 54, 1583-1588.	1.9	37
71	Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AICHE Journal, 2014, 60, 1066-1077.	1.8	37
72	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	2.2	37

#	Article	IF	CITATIONS
73	Hydrogenolysis of Hydroxymatairesinol Over Carbon-Supported Palladium Catalysts. Catalysis Letters, 2005, 103, 125-131.	1.4	35
74	Kinetic Study ofn-Butane Isomerization over Ptâ^'H-Mordenite. Industrial & Engineering Chemistry Research, 2005, 44, 471-484.	1.8	35
75	Hydrogenation of Lactose over Sponge Nickel CatalystsKinetics and Modeling. Industrial & Engineering Chemistry Research, 2006, 45, 5900-5910.	1.8	35
76	Enhancement of solid dissolution by ultrasound. Chemical Engineering and Processing: Process Intensification, 2007, 46, 862-869.	1.8	35
77	Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catalysis Today, 2012, 196, 26-33.	2.2	35
78	The effect of the metal precursor-reduction with hydrogen on a library of bimetallic Pd-Au and Pd-Pt catalysts for the direct synthesis of H2O2. Catalysis Today, 2015, 248, 40-47.	2.2	35
79	The effect of oxygen and the reduction temperature of the Pt/Al2O3 catalyst in enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Catalysis Today, 2000, 60, 175-184.	2.2	34
80	Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. Journal of Catalysis, 2015, 330, 93-105.	3.1	34
81	Hemicelluloses from stone pine, holm oak, and Norway spruce with subcritical water extraction â^' comparative study with characterization and kinetics. Journal of Supercritical Fluids, 2018, 133, 647-657.	1.6	34
82	Kinetics of oxidation of ferrous sulfate with molecular oxygen. Chemical Engineering Science, 1999, 54, 4223-4232.	1.9	33
83	Batchwise and continuous enantioselective hydrogenation of 1-phenyl-1,2-propanedione catalyzed by new Pt/SiO2 fibers. Applied Catalysis A: General, 2001, 216, 73-83.	2.2	33
84	Hydrosilylation of cinchonidine and 9-O-TMS-cinchonidine with triethoxysilane: application of 11-(triethoxysilyl)-10,11-dihydrocinchonidine as a chiral modifier in the enantioselective hydrogenation of 1-phenylpropane-1,2-dione. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2605-2612.	1.3	33
85	Reduction of ferric to ferrous with sphalerite concentrate, kinetic modelling. Hydrometallurgy, 2004, 73, 269-282.	1.8	33
86	Thermal and catalytic oligomerisation of fatty acids. Applied Catalysis A: General, 2007, 330, 1-11.	2.2	33
87	Selective catalytic oxidation of arabinose—A comparison of gold and palladium catalysts. Applied Catalysis A: General, 2010, 386, 101-108.	2.2	33
88	Isomerization of \hat{I} ±-Pinene Oxide Over Iron-Modified Zeolites. Topics in Catalysis, 2013, 56, 696-713.	1.3	33
89	New modelling approach to liquid–solid reaction kinetics: From ideal particles to real particles. Chemical Engineering Research and Design, 2013, 91, 1876-1889.	2.7	33
90	Kinetic model for the increase of reaction order during polyesterification. Chemical Engineering and Processing: Process Intensification, 2004, 43, 1487-1493.	1.8	32

#	Article	IF	CITATIONS
91	Effect of Ultrasound on Catalytic Hydrogenation ofd-Fructose tod-Mannitol. Industrial & Engineering Chemistry Research, 2005, 44, 9370-9375.	1.8	32
92	Preparation and Characterization of Alumina-Based Microreactors for Application in Methyl Chloride Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 4545-4555.	1.8	32
93	Preparation and characterization of neat and ZnCl2 modified zeolites and alumina for methyl chloride synthesis. Applied Catalysis A: General, 2013, 468, 120-134.	2.2	32
94	Hydrogenation of Citral Over a Polymer Fibre Catalyst. Catalysis Letters, 2002, 84, 219-224.	1.4	31
95	Influence of ruthenium precursor on catalytic activity of Ru/Al2O3 catalyst in selective isomerization of linoleic acid to cis-9,trans-11- and trans-10,cis-12-conjugated linoleic acid. Applied Catalysis A: General, 2004, 267, 121-133.	2.2	31
96	Solid-liquid reaction kinetics – experimental aspects and model development. Reviews in Chemical Engineering, 2011, 27, .	2.3	31
97	Direct synthesis of hydrogen peroxide in water in a continuous trickle bed reactor optimized to maximize productivity. Green Chemistry, 2013, 15, 2502.	4.6	31
98	A novel exit boundary condition for the axial dispersion model. Chemical Engineering and Processing: Process Intensification, 1995, 34, 359-366.	1.8	30
99	Investigation of CO oxidation and NO reduction on three-way monolith catalysts with transient response techniques. Applied Catalysis B: Environmental, 1997, 12, 287-308.	10.8	30
100	Aldolization of butyraldehyde with formaldehyde over a commercial anion-exchange resin — kinetics and selectivity aspects. Applied Catalysis A: General, 2000, 198, 207-221.	2.2	30
101	Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources. Applied Catalysis A: General, 2004, 259, 227-234.	2.2	30
102	Ethylene Oxide Formation in a Microreactor: From Qualitative Kinetics to Detailed Modeling. Industrial & Engineering Chemistry Research, 2010, 49, 10897-10907.	1.8	30
103	Continuous hydrogenation of glucose with ruthenium on carbon nanotube catalysts. Catalysis Science and Technology, 2015, 5, 953-959.	2.1	30
104	Bromide and Acids: A Comprehensive Study on Their Role on the Hydrogen Peroxide Direct Synthesis. Industrial & Engineering Chemistry Research, 2017, 56, 13367-13378.	1.8	30
105	Synthesis and characterization of Au nano particles supported catalysts for partial oxidation of ethanol: Influence of solution pH, Au nanoparticle size, support structure and acidity. Journal of Catalysis, 2017, 353, 223-238.	3.1	30
106	Gas phase hydrogenation of o- and p-xylene on NiAl2O3 — Kinetic modelling. Applied Catalysis A: General, 1997, 150, 115-129.	2.2	29
107	Catalyst Deactivation in Diborane Decomposition. Catalysis Letters, 2005, 105, 191-202.	1.4	29
108	Supported ionic liquid catalysts—From batch to continuous operation in preparation of fine chemicals. Catalysis Today, 2009, 147, S144-S148.	2.2	29

#	Article	IF	CITATIONS
109	Interaction of intrinsic kinetics and internal mass transfer in porous ion-exchange catalysts: Green synthesis of peroxycarboxylic acids. Chemical Engineering Science, 2009, 64, 4101-4114.	1.9	29
110	Batch and Semibatch Partial Oxidation of Starch by Hydrogen Peroxide in the Presence of an Iron Tetrasulfophthalocyanine Catalyst: The Effect of Ultrasound and the Catalyst Addition Policy. Industrial & Engineering Chemistry Research, 2011, 50, 749-757.	1.8	29
111	Oxidative dehydrogenation of a biomass derived lignan – Hydroxymatairesinol over heterogeneous gold catalysts. Journal of Catalysis, 2011, 282, 54-64.	3.1	29
112	Epoxidation of Fatty Acids and Vegetable Oils Assisted by Microwaves Catalyzed by a Cation Exchange Resin. Industrial & Engineering Chemistry Research, 2018, 57, 3876-3886.	1.8	29
113	Catalytic ozonation of the antibiotic sulfadiazine: Reaction kinetics and transformation mechanisms. Chemosphere, 2020, 247, 125853.	4.2	29
114	Kinetic Study and Modeling of Peroxypropionic Acid Synthesis from Propionic Acid and Hydrogen Peroxide Using Homogeneous Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 656-664.	1.8	28
115	Isomerization of β-pinene oxide over Sn-modified zeolites. Journal of Molecular Catalysis A, 2013, 366, 228-237.	4.8	28
116	Influence of gas-liquid mass transfer on kinetic modeling: Carbonation of epoxidized vegetable oils. Chemical Engineering Journal, 2017, 313, 1168-1183.	6.6	28
117	Intraparticle diffusion model to determine the intrinsic kinetics of ethyl levulinate synthesis promoted by Amberlyst-15. Chemical Engineering Science, 2020, 228, 115974.	1.9	28
118	Modelling of the high temperature water gas shift reaction with stationary and transient experiments. Chemical Engineering Science, 1986, 41, 929-936.	1.9	27
119	Deactivation of the high-temperature water-gas shift catalyst in nonisothermal conditions. Applied Catalysis A: General, 1992, 87, 185-203.	2.2	27
120	Development and verification of a simulation model for a non-isothermal water-gas shift reactor. The Chemical Engineering Journal, 1992, 48, 17-29.	0.4	27
121	Kinetic study of the carboxymethylation of cellulose. Industrial & Engineering Chemistry Research, 1994, 33, 1454-1459.	1.8	27
122	Kinetics of m-xylene hydrogenation on NiAl2O3. Applied Catalysis A: General, 1996, 141, 207-228.	2.2	27
123	Effects of solvent polarity on the hydrogenation of xylose. Journal of Chemical Technology and Biotechnology, 2001, 76, 90-100.	1.6	27
124	Modeling of the enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt/Al2O3 catalyst. Catalysis Today, 2001, 66, 411-417.	2.2	27
125	Synthesis of Novel Ag Modified MCM-41 Mesoporous Molecular Sieve and Beta Zeolite Catalysts for Ozone Decomposition at Ambient Temperature. Catalysis Letters, 2004, 98, 57-60.	1.4	27
126	Heterogeneous Catalytic Production of Conjugated Linoleic Acid. Organic Process Research and Development, 2004, 8, 341-352.	1.3	27

#	Article	IF	CITATIONS
127	Isomerization of n-butane to isobutane over Pt-SAPO-5, SAPO-5, Pt-H-mordenite and H-mordenite catalysts. Catalysis Today, 2005, 100, 355-361.	2.2	27
128	Selective Oxidation of <scp>D</scp> â€Galactose over Gold Catalysts. ChemCatChem, 2011, 3, 1789-1798.	1.8	27
129	Factors affecting catalytic destruction of H2O2 by hydrogenation and decomposition over Pd catalysts supported on activated carbon cloth (ACC). Catalysis Today, 2015, 248, 69-79.	2.2	27
130	Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water. Journal of Supercritical Fluids, 2017, 129, 56-62.	1.6	27
131	Kinetics and modelling of furfural oxidation with hydrogen peroxide over a fibrous heterogeneous catalyst: effect of reaction parameters on yields of succinic acid. Journal of Chemical Technology and Biotechnology, 2017, 92, 2206-2220.	1.6	27
132	Kinetic Model for the Homogeneously Catalyzed Polyesterification of Dicarboxylic Acids with Diols. Industrial & Engineering Chemistry Research, 1996, 35, 3951-3963.	1.8	26
133	Impact of Catalyst Reduction Mode on Selective Hydrogenation of Cinnamaldehyde over Ruâ^'Sn Solâ^'Gel Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 295-305.	1.8	26
134	Ring-opening of decalin – Kinetic modelling. Fuel, 2009, 88, 366-373.	3.4	26
135	Mechanistic modelling of kinetics and mass transfer for a solid–liquid system: Leaching of zinc with ferric iron. Chemical Engineering Science, 2010, 65, 4460-4471.	1.9	26
136	Modeling the Influence of Wood Anisotropy and Internal Diffusion on Delignification Kinetics. Industrial & Engineering Chemistry Research, 2010, 49, 9703-9711.	1.8	26
137	Modeling of microreactors for ethylene epoxidation and total oxidation. Chemical Engineering Science, 2015, 134, 563-571.	1.9	26
138	Heterogeneously Catalytic Isomerization of Linoleic Acid over Supported Ruthenium Catalysts for Production of Anticarcinogenic Food Constituents. Industrial & Engineering Chemistry Research, 2003, 42, 718-727.	1.8	25
139	Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactor—Thermodynamics, kinetics and mass transfer. Chemical Engineering Science, 2013, 95, 232-245.	1.9	25
140	Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate – Kinetic modeling. Fuel, 2015, 153, 445-454.	3.4	25
141	Lignin isolation from spruce wood with low concentration aqueous alkali at high temperature and pressure: influence of hot-water pre-extraction. Green Chemistry, 2015, 17, 5058-5068.	4.6	25
142	Revealing the role of bromide in the H ₂ O ₂ direct synthesis with the catalyst wet pretreatment method (CWPM). AICHE Journal, 2017, 63, 32-42.	1.8	25
143	Kinetics and reactor modelling of fatty acid epoxidation in the presence of heterogeneous catalyst. Chemical Engineering Journal, 2019, 375, 121936.	6.6	25
144	Title is missing!. Catalysis Letters, 2002, 78, 105-110.	1.4	24

#	Article	IF	CITATIONS
145	Effect of Internal Diffusion in Supported Ionic Liquid Catalysts:Â Interaction with Kinetics. Industrial & Engineering Chemistry Research, 2007, 46, 3932-3940.	1.8	24
146	Kinetics of Citral Hydrogenation by Supported Ionic Liquid Catalysts (SILCA) for Fine Chemicals. Industrial & Engineering Chemistry Research, 2007, 46, 9022-9031.	1.8	24
147	Reversible Autocatalytic Hydrolysis of Alkyl Formate: Kinetic and Reactor Modeling. Industrial & Engineering Chemistry Research, 2010, 49, 4099-4106.	1.8	24
148	Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: Sugar hydrogenation as a case study. Chemical Engineering Research and Design, 2015, 102, 171-185.	2.7	24
149	Aqueous extraction of hemicelluloses from spruce – From hot to warm. Bioresource Technology, 2016, 199, 279-282.	4.8	24
150	Heterogeneous Catalytic Oxidation of Furfural with Hydrogen Peroxide over Sulfated Zirconia. Industrial & Engineering Chemistry Research, 2020, 59, 13516-13527.	1.8	24
151	Interaction of kinetics and internal diffusion in complex catalytic three-phase reactions: Activity and selectivity in citral hydrogenation. Chemical Engineering Science, 2006, 61, 814-822.	1.9	23
152	Cascade approach for synthesis of R-1-phenyl ethyl acetate from acetophenone: Effect of support. Journal of Molecular Catalysis A, 2008, 285, 132-141.	4.8	23
153	Preparation and Study of Pd Catalysts Supported on Activated Carbon Cloth (ACC) for Direct Synthesis of H2O2 from H2 and O2. Topics in Catalysis, 2013, 56, 527-539.	1.3	23
154	The influence of catalyst amount and Pd loading on the H ₂ O ₂ synthesis from hydrogen and oxygen. Catalysis Science and Technology, 2015, 5, 3545-3555.	2.1	23
155	Carbonation of Vegetable Oils: Influence of Mass Transfer on Reaction Kinetics. Industrial & Engineering Chemistry Research, 2015, 54, 10935-10944.	1.8	23
156	Promotional effects of Au in Pd–Au bimetallic catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2. Catalysis Today, 2015, 248, 58-68.	2.2	23
157	Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters. Chemical Engineering Science, 2021, 230, 116206.	1.9	23
158	Kinetic model for main and side reactions in the polyesterification of dicarboxylic acids with diols. Chemical Engineering Science, 1994, 49, 3601-3616.	1.9	22
159	Kinetics of melt polymerization of maleic acid phthalic acids with propylene glycol. Chemical Engineering Science, 1994, 49, 5053-5070.	1.9	22
160	Dynamic modelling of catalytic liquid-phase reactions in fixed beds—Kinetics and catalyst deactivation in the recovery of anthraquinones. Chemical Engineering Science, 2006, 61, 4528-4539.	1.9	22
161	Synthesis of peroxypropionic acid from propionic acid and hydrogen peroxide over heterogeneous catalysts. Chemical Engineering Journal, 2009, 147, 323-329.	6.6	22
162	Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 2009, 353, 166-180.	2.2	22

#	Article	IF	CITATIONS
163	Kinetics of Methyl Formate Hydrolysis in the Absence and Presence of a Complexing Agent. Industrial & Engineering Chemistry Research, 2011, 50, 267-276.	1.8	22
164	Acid hydrolysis of O-acetyl-galactoglucomannan. Catalysis Science and Technology, 2013, 3, 116-122.	2.1	22
165	Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. Industrial & Engineering Chemistry Research, 2013, 52, 14066-14080.	1.8	22
166	Oxidation of Starch by H ₂ O ₂ in the Presence of Iron Tetrasulfophthalocyanine Catalyst: The Effect of Catalyst Concentration, pH, Solid–Liquid Ratio, and Origin of Starch. Industrial & Engineering Chemistry Research, 2013, 52, 9351-9358.	1.8	22
167	Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catalysis Today, 2015, 257, 169-176.	2.2	22
168	Cooling and stirring failure for semi-batch reactor: Application to exothermic reactions in multiphase reactor. Journal of Loss Prevention in the Process Industries, 2016, 43, 147-157.	1.7	22
169	Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. Journal of Catalysis, 2021, 394, 193-205.	3.1	22
170	Advanced Kinetic Concepts and Experimental Methods for Catalytic Three-Phase Processes. Industrial & Engineering Chemistry Research, 2004, 43, 4540-4550.	1.8	21
171	Hydrogenation of Citral over Activated Carbon Cloth Catalystâ€. Industrial & Engineering Chemistry Research, 2005, 44, 5285-5290.	1.8	21
172	Inverse temperature dependence due to catalyst deactivation in liquid phase citral hydrogenation over Pt/Al2O3. Chemical Engineering Journal, 2006, 122, 127-134.	6.6	21
173	Kinetic Modeling of Propene Hydroformylation with Rh/TPP and Rh/CHDPP Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 4317-4324.	1.8	21
174	Maldistribution susceptibility of monolith reactors: Case study of glucose hydrogenation performance. AICHE Journal, 2016, 62, 4346-4364.	1.8	21
175	Application of linear free-energy relationships to perhydrolysis of different carboxylic acids over homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A, 2009, 303, 148-155.	4.8	20
176	Hydrogenation of l-Arabinose and d-Galactose Mixtures Over a Heterogeneous Ru/C Catalyst. Topics in Catalysis, 2012, 55, 550-555.	1.3	20
177	Catalytic Transformation of Abietic Acid to Hydrocarbons. Topics in Catalysis, 2012, 55, 673-679.	1.3	20
178	Reactivity Aspects of SBA15-Based Doped Supported Catalysts: H2O2 Direct Synthesis and Disproportionation Reactions. Topics in Catalysis, 2013, 56, 540-549.	1.3	20
179	Synthesis and characterization of Pd-MCM-22 and Pt-SAPO-11 catalysts for transformation of n-butane to aromatic hydrocarbons. Applied Catalysis A: General, 2002, 227, 97-103.	2.2	19
180	Acid hydrolysis of <i>O</i> -acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung, 2016, 70, 187-194.	0.9	19

#	Article	IF	CITATIONS
181	Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique. Catalysis Today, 2022, 383, 64-73.	2.2	19
182	Continuous Liquid-Phase Epoxidation of Ethylene with Hydrogen Peroxide on a Titanium-Silicate Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 9429-9436.	1.8	19
183	Modelling of citral hydrogenation kinetics on an Ni/Al2O3 catalyst. Catalysis Today, 1999, 48, 57-63.	2.2	18
184	Modelling of catalyst deactivation in liquid phase reactions: citral hydrogenation on Ru/Al2O3. Reaction Kinetics and Catalysis Letters, 2003, 78, 251-257.	0.6	18
185	Reactions of hydroxymatairesinol over supported palladium catalysts. Journal of Catalysis, 2006, 238, 301-308.	3.1	18
186	Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis, 2008, 174, 1069-1074.	1.5	18
187	Revisiting shrinking particle and product layer models for fluid–solid reactions – From ideal surfaces to real surfaces. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1076-1084.	1.8	18
188	Common potholes in modeling solid–liquid reactions—methods for avoiding them. Chemical Engineering Science, 2011, 66, 4459-4467.	1.9	18
189	Experimental and Modeling Study of Catalytic Hydrogenation of Glucose to Sorbitol in a Continuously Operating Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 7690-7703.	1.8	18
190	Ethene oxychlorination over CuCl2/γ-Al2O3 catalyst in micro- and millistructured reactors. Journal of Catalysis, 2018, 364, 334-344.	3.1	18
191	Kinetics and Modelling of Levulinic Acid Esterification in Batch and Continuous Reactors. Topics in Catalysis, 2018, 61, 1856-1865.	1.3	18
192	Influence of steric effects on the kinetics of cyclic-carbonate vegetable oils aminolysis. Chemical Engineering Science, 2020, 228, 115954.	1.9	18
193	Process development in the fine chemical industry. Chemical Engineering Journal, 2003, 91, 103-114.	6.6	17
194	Structured but not over-structured: Woven active carbon fibre matt catalyst. Catalysis Today, 2005, 105, 325-330.	2.2	17
195	Modeling and Scale-up of Sitosterol Hydrogenation Process:Â From Laboratory Slurry Reactor to Plant Scale. Industrial & Engineering Chemistry Research, 2006, 45, 7067-7076.	1.8	17
196	One-pot utilization of heterogeneous and enzymatic catalysis: Synthesis of R-1-phenylethyl acetate from acetophenone. Catalysis Today, 2009, 140, 70-73.	2.2	17
197	Biomass to value added chemicals: Isomerisation of β-pinene oxide over supported ionic liquid catalysts (SILCAs) containing Lewis acids. Catalysis Today, 2015, 257, 318-321.	2.2	17
198	Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate. Bioresource Technology, 2015, 193, 337-344.	4.8	17

#	Article	IF	CITATIONS
199	Kinetics of the One-Pot Transformation of Citronellal to Menthols on Ru/H-BEA Catalysts. Organic Process Research and Development, 2016, 20, 1647-1653.	1.3	17
200	Influence of the support of copper catalysts on activity and 1,2-dichloroethane selectivity in ethylene oxychlorination. Applied Catalysis A: General, 2018, 556, 41-51.	2.2	17
201	Thermal risk assessment for the epoxidation of linseed oil by classical Prisleschajew epoxidation and by direct epoxidation by H2O2 on alumina. Journal of Thermal Analysis and Calorimetry, 2020, 140, 673-684.	2.0	17
202	Ozonation of carbamazepine and its main transformation products: product determination and reaction mechanisms. Environmental Science and Pollution Research, 2020, 27, 23258-23269.	2.7	17
203	Investigation of the intrinsic reaction kinetics and the mass transfer phenomena of nonanoic acid esterification with 2-ethylhexanol promoted by sulfuric acid or Amberlite IR120. Chemical Engineering Journal, 2021, 408, 127236.	6.6	17
204	Interfacial mass transfer in trickle-bed reactor modelling. Chemical Engineering Science, 1996, 51, 4335-4345.	1.9	16
205	Gas-phase hydrogenation of ethylbenzene over Ni Applied Catalysis A: General, 2000, 201, 55-59.	2.2	16
206	Sugar Hydrogenation Over Supported Ru/C—Kinetics and Physical Properties. Topics in Catalysis, 2010, 53, 1278-1281.	1.3	16
207	Preparation and characterization of a new bis-layered supported ionic liquid catalyst (SILCA) with an unprecedented activity in the Heck reaction. Journal of Catalysis, 2019, 371, 35-46.	3.1	16
208	Epoxidation of Tall Oil Catalyzed by an Ion Exchange Resin under Conventional Heating and Microwave Irradiation. Industrial & Engineering Chemistry Research, 2020, 59, 10397-10406.	1.8	16
209	Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts, 2020, 10, 90.	1.6	16
210	Recent Advances in C5 and C6 Sugar Alcohol Synthesis by Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts. Molecules, 2022, 27, 1353.	1.7	16
211	Kinetics of mesitylene hydrogenation on Ni/Al2O3. Applied Catalysis A: General, 1999, 185, 131-136.	2.2	15
212	Solubility of gases in a hydroformylation solvent. Chemical Engineering Science, 2006, 61, 3698-3704.	1.9	15
213	Rates and equilibria of ester hydrolysis: Combination of slow and rapid reactions. Chemical Engineering and Processing: Process Intensification, 2011, 50, 665-674.	1.8	15
214	Modeling of a Liquid–Liquid–Solid Heterogeneous Reaction System: Model System and Peroxyvaleric Acid. Industrial & Engineering Chemistry Research, 2012, 51, 189-201.	1.8	15
215	Solvent Effects in the Enantioselective Hydrogenation of Ethyl Benzoylformate. Catalysis Letters, 2013, 143, 1051-1060.	1.4	15
216	Isomerisation of α-Pinene Oxide to Campholenic Aldehyde Over Supported Ionic Liquid Catalysts (SILCAs). Topics in Catalysis, 2014, 57, 1533-1538.	1.3	15

#	Article	IF	CITATIONS
217	Application of the Catalyst Wet Pretreatment Method (CWPM) for catalytic direct synthesis of H2O2. Catalysis Today, 2015, 246, 207-215.	2.2	15
218	Study of the Product Distribution in the Epoxidation of Propylene over TS-1 Catalyst in a Trickle-Bed Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 2430-2438.	1.8	15
219	Selective synthesis of .alphachlorocarboxylic acids. Industrial & Engineering Chemistry Research, 1992, 31, 2425-2437.	1.8	14
220	Kinetics of Acid Hydrolysis of Arabinogalactans. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	14
221	Modelling of transient kinetics in catalytic three-phase reactors: Enantioselective hydrogenation. Chemical Engineering Science, 2010, 65, 1076-1087.	1.9	14
222	Direct synthesis of H2O2 over Pd supported on rare earths promoted zirconia. Catalysis Today, 2015, 256, 294-301.	2.2	14
223	Effect of low hydrogen to palladium molar ratios in the direct synthesis of H2O2 in water in a trickle bed reactor. Catalysis Today, 2015, 248, 91-100.	2.2	14
224	Mass & energy balances coupling in chemical reactors for a better understanding of thermal safety. Education for Chemical Engineers, 2016, 16, 17-28.	2.8	14
225	Screening of ion exchange resin catalysts for epoxidation of oleic acid under the influence of conventional and microwave heating. Journal of Chemical Technology and Biotechnology, 2019, 94, 3020-3031.	1.6	14
226	Catalytic oxidation kinetics of arabinose on supported gold nanoparticles. Chemical Engineering Journal, 2019, 370, 952-961.	6.6	14
227	Aqueous phase reforming of alcohols over a bimetallic Pt-Pd catalyst in the presence of formic acid. Chemical Engineering Journal, 2020, 398, 125541.	6.6	14
228	Application of microreactor technology to dehydration of bio-ethanol. Chemical Engineering Science, 2021, 229, 116030.	1.9	14
229	Parameter estimation in kinetic models of complex heterogeneous catalytic reactions using Bayesian statistics. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 1-15.	0.8	14
230	New insights into the cocatalyst-free carbonation of vegetable oil derivatives using heterogeneous catalysts. Journal of CO2 Utilization, 2022, 57, 101879.	3.3	14
231	On the Principles of Modelling of Homogeneousâ^'Heterogeneous Reactions in the Production of Fine Chemicals. A Case Study:Â Reductive Alkylation of Aromatic Amines. Organic Process Research and Development, 1998, 2, 78-85.	1.3	13
232	Effect of modifier structure in the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Reaction Kinetics and Catalysis Letters, 2002, 75, 21-30.	0.6	13
233	The development of monolith reactors: general strategy with a case study. Chemical Engineering Science, 2004, 59, 5629-5635.	1.9	13
234	A highly stable and selective Pt-modified mordenite catalyst for the skeletal isomerization of n-butane. Applied Catalysis A: General, 2005, 284, 223-230.	2.2	13

#	Article	IF	CITATIONS
235	Novel woven active carbon fiber catalyst in the hydrogenation of citral. Catalysis Today, 2005, 102-103, 128-132.	2.2	13
236	Kinetic study of decomposition of peroxypropionic acid in liquid phase through direct analysis of decomposition products in gas phase. Chemical Engineering Science, 2007, 62, 5007-5012.	1.9	13
237	Dissolution of boehmite in sodium hydroxide at ambient pressure: Kinetics and modelling. Hydrometallurgy, 2010, 102, 22-30.	1.8	13
238	Qualitative treatment of catalytic hydrolysis of alkyl formates. Applied Catalysis A: General, 2010, 384, 36-44.	2.2	13
239	Green process technology for peroxycarboxylic acids: Estimation of kinetic and dispersion parameters aided by RTD measurements: Green synthesis of peroxycarboxylic acids. Chemical Engineering Science, 2011, 66, 1038-1050.	1.9	13
240	Ethylene oxide – kinetics and mechanism. Current Opinion in Chemical Engineering, 2012, 1, 321-327.	3.8	13
241	A comprehensive study on the kinetics, mass transfer and reaction engineering aspects of solvent-free glycerol hydrochlorination. Chemical Engineering Science, 2014, 120, 88-104.	1.9	13
242	Modeling and simulation of a small-scale trickle bed reactor for sugar hydrogenation. Computers and Chemical Engineering, 2014, 66, 22-35.	2.0	13
243	Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalysts for propylene oxide and CO2 copolymerization. European Polymer Journal, 2017, 88, 280-291.	2.6	13
244	Ethylene epoxidation over supported silver catalysts – influence of catalyst pretreatment on conversion and selectivity. Journal of Chemical Technology and Biotechnology, 2018, 93, 1549-1557.	1.6	13
245	Synthesis and Characterization Ru–C/SiO2 Aerogel Catalysts for Sugar Hydrogenation Reactions. Catalysis Letters, 2018, 148, 3514-3523.	1.4	13
246	Continuous Hydrogenation of Monomeric Sugars and Binary Sugar Mixtures on a Ruthenium Catalyst Supported by Carbon-Coated Open-Cell Aluminum Foam. Industrial & Engineering Chemistry Research, 2020, 59, 13450-13459.	1.8	13
247	The effect of reaction kinetics, mass transfer and flow pattern on non-catalytic and homogeneously catalyzed gas-liquid reactions in bubble columns. Chemical Engineering Science, 1992, 47, 2493-2498.	1.9	12
248	Kinetics of the hydrogenation of citral over supported Ni catalyst. Studies in Surface Science and Catalysis, 1997, 108, 273-280.	1.5	12
249	Investigation of the catalytic decomposition of NO and N2O on supported Rh with transient techniques. Chemical Engineering Science, 1999, 54, 4343-4349.	1.9	12
250	Physico-chemical and catalytic properties of Zr- and Cu–Zr ion-exchanged H-MCM-41. Physical Chemistry Chemical Physics, 2004, 6, 4062-4069.	1.3	12
251	Skeletal Isomerization of Butene in Fixed Beds. 1. Experimental Investigation and Structureâ^Performance Effects. Industrial & Engineering Chemistry Research, 2008, 47, 5402-5412.	1.8	12
252	Reaction Routes in Selective Ring Opening of Naphthenes. Topics in Catalysis, 2010, 53, 1172-1175.	1.3	12

#	Article	IF	CITATIONS
253	Kinetic modelling of regioselectivity in alkenes hydroformylation over rhodium. Journal of Molecular Catalysis A, 2010, 315, 148-154.	4.8	12
254	Palladium catalysts supported on N-functionalized hollow vapor-grown carbon nanofibers: The effect of the basic support and catalyst reduction temperature. Applied Catalysis A: General, 2011, 408, 137-147.	2.2	12
255	Role of a Functionalized Polymer (K2621) and an Inorganic Material (Sulphated Zirconia) as Supports in Hydrogen Peroxide Direct Synthesis in a Continuous Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 15472-15480.	1.8	12
256	Catalytic Pyrolysis of Lignocellulosic Biomass. , 2013, , 137-159.		12
257	Kinetic Model for Homogeneously Catalyzed Halogenation of Glycerol. Industrial & Engineering Chemistry Research, 2013, 52, 1523-1530.	1.8	12
258	Kinetics and catalyst deactivation in the enantioselective hydrogenation of ethyl benzoylformate over Pt/Al ₂ O ₃ . Catalysis Science and Technology, 2014, 4, 170-178.	2.1	12
259	Heterogeneously catalyzed conversion of nordic pulp to levulinic and formic acids. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 415-427.	0.8	12
260	Sugar hydrogenation in continuous reactors: From catalyst particles towards structured catalysts. Chemical Engineering and Processing: Process Intensification, 2016, 109, 1-10.	1.8	12
261	Application of film theory on the reactions of solid particles with liquids: Shrinking particles with changing liquid films. Chemical Engineering Science, 2017, 160, 161-170.	1.9	12
262	Synthesis of carbonated vegetable oils: Investigation of microwave effect in a pressurized continuous-flow recycle batch reactor. Chemical Engineering Research and Design, 2018, 132, 9-18.	2.7	12
263	Kinetic modelling of heterogeneous catalytic oxidation of furfural with hydrogen peroxide to succinic acid. Chemical Engineering Journal, 2020, 382, 122811.	6.6	12
264	Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions. Catalysts, 2020, 10, 786.	1.6	12
265	Modelling of a microreactor for the partial oxidation of 1-butanol on a titania supported gold catalyst. Chemical Engineering Science, 2020, 221, 115695.	1.9	12
266	Nonanoic acid esterification with 2-ethylhexanol: From batch to continuous operation. Chemical Engineering Journal, 2022, 444, 136572.	6.6	12
267	Modelling and simulation of transient states of ideal heterogeneous catalytic reactors. Chemical Engineering Science, 1988, 43, 503-511.	1.9	11
268	Modelling and scale-up of a loop reactor for hydrogenation processes. Chemical Engineering Science, 1999, 54, 2793-2798.	1.9	11
269	Influence of mass transfer on regio- and enantioselectivity in hydrogenation of 1-phenyl-1,2-propanedione over modified Pt catalysts. Catalysis Today, 2003, 79-80, 189-193.	2.2	11
270	Modeling of Direct Synthesis of Hydrogen Peroxide in a Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 13366-13378.	1.8	11

#	Article	IF	CITATIONS
271	Interconversion of Lactose to Lactulose in Alkaline Environment: Comparison of Different Catalysis Concepts. Topics in Catalysis, 2013, 56, 839-845.	1.3	11
272	Kinetics upon Isomerization of α,β-Pinene Oxides over Supported Ionic Liquid Catalysts Containing Lewis Acids. Industrial & Engineering Chemistry Research, 2014, 53, 20107-20115.	1.8	11
273	Direct Synthesis of 1-Butanol from Ethanol in a Plug Flow Reactor: Reactor and Reaction Kinetics Modeling. Topics in Catalysis, 2014, 57, 1425-1429.	1.3	11
274	Revisiting the dissolution kinetics of limestone - experimental analysis and modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 1517-1531.	1.6	11
275	High purity fructose from inulin with heterogeneous catalysis – kinetics and modelling. Journal of Chemical Technology and Biotechnology, 2018, 93, 224-232.	1.6	11
276	Asymptotic analysis of chemical reactions. Chemical Engineering Science, 1999, 54, 1131-1143.	1.9	10
277	Non-traditional three-phase reactor setup for simultaneous acoustic irradiation and hydrogenation. Journal of Chemical Technology and Biotechnology, 2003, 78, 203-207.	1.6	10
278	Dynamic Modeling of Catalyst Deactivation in Fixed-Bed Reactors:Â Skeletal Isomerization of 1-Pentene on Ferrierite. Industrial & Engineering Chemistry Research, 2006, 45, 558-566.	1.8	10
279	Modelling of organic liquid-phase decomposition reactions through gas-phase product analysis: Model systems and peracetic acid. Chemical Engineering Science, 2006, 61, 6918-6928.	1.9	10
280	Modeling of a Three-Phase Continuously Operating Isothermal Packed-Bed Reactor: Kinetics, Mass-Transfer, and Dispersion Effects in the Hydrogenation of Citral. Industrial & Engineering Chemistry Research, 2012, 51, 8858-8866.	1.8	10
281	Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects. Catalysis Letters, 2012, 142, 676-689.	1.4	10
282	Esterification of Fatty Acids and Short-Chain Carboxylic Acids with Stearyl Alcohol and Sterols. ACS Sustainable Chemistry and Engineering, 2014, 2, 537-545.	3.2	10
283	The use of modelling to understand the mechanism of hydrogen peroxide direct synthesis from batch, semibatch and continuous reactor points of view. Reaction Chemistry and Engineering, 2016, 1, 300-312.	1.9	10
284	Chromatographic reactor modelling. Chemical Engineering Journal, 2019, 377, 119692.	6.6	10
285	Glucose transformations over a mechanical mixture of ZnO and Ru/C catalysts: Product distribution, thermodynamics and kinetics. Chemical Engineering Journal, 2021, 405, 126945.	6.6	10
286	Prilezhaev epoxidation of oleic acid in the presence and absence of ultrasound irradiation. Journal of Chemical Technology and Biotechnology, 2021, 96, 1874-1881.	1.6	10
287	Biohydrogen from dilute side streams - Influence of reaction conditions on the conversion and selectivity in aqueous phase reforming of xylitol. Biomass and Bioenergy, 2020, 138, 105590.	2.9	10
288	Catalytic decomposition of formic acid in a fixed bed reactor – an experimental and modelling study. Catalysis Today, 2022, 387, 128-139.	2.2	10

#	Article	IF	CITATIONS
289	Isothermal multiplicity in catalytic surface reactions with coverage dependent parameters — Case of polyatomic species. Chemical Engineering Science, 1996, 51, 55-62.	1.9	9
290	Kinetics and Stereoselectivity in Gas-Phase Hydrogenation of Alkylbenzenes Over Ni/Al2O3. Reaction Kinetics and Catalysis Letters, 2000, 71, 47-54.	0.6	9
291	Transient reduction kinetics of NO over Pd-based metallic monoliths. Chemical Engineering Science, 2001, 56, 1395-1401.	1.9	9
292	Kinetics and modeling of H2/D2 exchange over Ag/Al2O3. Applied Catalysis A: General, 2004, 273, 303-307.	2.2	9
293	Short overview on the application of metal-modified molecular sieves in selective hydrogenation of cinnamaldehyde. Catalysis Today, 2005, 100, 349-353.	2.2	9
294	An integrated dynamic model for reaction kinetics and catalyst deactivation in fixed bed reactors: skeletal isomerization of 1-pentene over ferrierite. Chemical Engineering Science, 2006, 61, 1157-1166.	1.9	9
295	Multitubular reactor design as an advanced screening tool for three-phase catalytic reactions. Topics in Catalysis, 2007, 45, 223-227.	1.3	9
296	Skeletal Isomerization of Butene in Fixed Beds. Part 2. Kinetic and Flow Modeling. Industrial & Engineering Chemistry Research, 2008, 47, 5413-5426.	1.8	9
297	The Dissolution Kinetics of Gibbsite in Sodium Hydroxide at Ambient Pressure. Industrial & Engineering Chemistry Research, 2010, 49, 2600-2607.	1.8	9
298	Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2–MgO catalyst in the presence of butylene oxide as additive. Applied Catalysis A: General, 2011, 404, 39-39.	2.2	9
299	Modelling and experimental verification of cellulose substitution kinetics. Chemical Engineering Science, 2011, 66, 171-182.	1.9	9
300	Influence of Metal Precursors and Reduction Protocols on the Chlorideâ€Free Preparation of Catalysts for the Direct Synthesis of Hydrogen Peroxide without Selectivity Enhancers. ChemCatChem, 2016, 8, 1564-1574.	1.8	9
301	Microreactor coating with Au/Al2O3 catalyst for gas-phase partial oxidation of ethanol: Physico-chemical characterization and evaluation of catalytic properties. Chemical Engineering Journal, 2019, 378, 122179.	6.6	9
302	Oxidation of glucose and arabinose mixtures over Au/Al2O3. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 59-72.	0.8	9
303	Identification and Quantification of Transformation Products Formed during the Ozonation of the Non-steroidal Anti-inflammatory Pharmaceuticals Ibuprofen and Diclofenac. Ozone: Science and Engineering, 2022, 44, 157-171.	1.4	9
304	Solid Foam Ru/C Catalysts for Sugar Hydrogenation to Sugar Alcohols─Preparation, Characterization, Activity, and Selectivity. Industrial & Engineering Chemistry Research, 2022, 61, 2734-2747.	1.8	9
305	Kinetic model for the synthesis of α-chlorocarboxylic acids. Chemical Engineering Science, 1993, 48, 735-751.	1.9	8
306	Modeling of Complex Organic Solidâ^'Liquid Reaction Systems in Stirred Tanks. Industrial & Engineering Chemistry Research, 2003, 42, 2516-2524.	1.8	8

#	Article	IF	CITATIONS
307	Kinetics and modeling of (R,S)â€1â€phenylethanol acylation over lipase. International Journal of Chemical Kinetics, 2010, 42, 629-639.	1.0	8
308	Mechanistic model for kinetics of propene hydroformylation with Rh catalyst. AICHE Journal, 2012, 58, 2192-2201.	1.8	8
309	Kinetic studies of alkyl formate hydrolysis using formic acid as a catalyst. Journal of Chemical Technology and Biotechnology, 2012, 87, 286-293.	1.6	8
310	Utilisation of a multitubular reactor system for parallel screening of catalysts for ring opening of decalin in continuous mode. Chemical Engineering Journal, 2014, 238, 3-8.	6.6	8
311	Preparation of selective ZnCl 2 /alumina catalysts for methyl chloride synthesis: Influence of pH, precursor and zinc loading. Applied Catalysis A: General, 2015, 490, 117-127.	2.2	8
312	Mathematical modeling of starch oxidation by hydrogen peroxide in the presence of an iron catalyst complex. Chemical Engineering Science, 2016, 146, 19-25.	1.9	8
313	Kinetics of the Chlorination of Acetic Acid with Chlorine in the Presence of Chlorosulfonic Acid and Thionyl Chloride. Industrial & Engineering Chemistry Research, 1994, 33, 2073-2083.	1.8	7
314	Hydrogenation Kinetics of 2,2-Dimethylol-1-butanal to Trimethylolpropane over a Supported Nickel Catalyst. Industrial & Engineering Chemistry Research, 2000, 39, 2876-2882.	1.8	7
315	Polyesterification kinetics of complex mixtures in semibatch reactors. Chemical Engineering Science, 2001, 56, 1293-1298.	1.9	7
316	Modelling of kinetic and transport effects in aldol hydrogenation over metal catalysts. Chemical Engineering Science, 2002, 57, 1793-1803.	1.9	7
317	Application of transient methods in three-phase catalysis: hydrogenation of a dione in a catalytic plate column. Catalysis Today, 2003, 79-80, 383-389.	2.2	7
318	Catalytic reduction of NO by H2 over Ag/Al2O3 under dry reducing conditions. Applied Catalysis A: General, 2005, 294, 49-58.	2.2	7
319	Selectivity Enhancement by Catalyst Deactivation in Three-Phase Hydrogenation of Nerol. Industrial & Engineering Chemistry Research, 2005, 44, 9376-9383.	1.8	7
320	Kinetics of homogeneous catalytic chlorination of acetic acid. Journal of Chemical Technology and Biotechnology, 1987, 40, 259-274.	1.6	7
321	Dissolution of Mineral Fiber in a Formic Acid Solution: Kinetics, Modeling, and Gelation of the Resulting Sol. Industrial & Engineering Chemistry Research, 2008, 47, 9834-9841.	1.8	7
322	Deposition of carbonaceous species over Ag/alumina catalysts for the HC-SCR of NOx under lean conditions: a qualitative and quantitative study. Catalysis Science and Technology, 2011, 1, 1456.	2.1	7
323	Product distribution analysis of the hydrogen peroxide direct synthesis in an isothermal batch reactor. Catalysis Today, 2015, 248, 108-114.	2.2	7
324	Advanced millireactor technology for the kinetic investigation of very rapid reactions: Dehydrochlorination of 1,3-dichloro-2-propanol to epichlorohydrin. Chemical Engineering Science, 2016, 149, 35-41.	1.9	7

#	Article	IF	CITATIONS
325	Liquid Holdup by Gravimetric Recirculation Continuous Measurement Method. Application to Trickle Bed Reactors under Pressure at Laboratory Scale. Industrial & Engineering Chemistry Research, 2017, 56, 13294-13300.	1.8	7
326	High purity fructose from inulin with heterogeneous catalysis–Âfrom batch to continuous operation. Journal of Chemical Technology and Biotechnology, 2019, 94, 418-425.	1.6	7
327	Reaction engineering approach to the synthesis of sodium borohydride. Chemical Engineering Science, 2019, 199, 79-87.	1.9	7
328	Pt Modified Heterogeneous Catalysts Combined with Ozonation for the Removal of Diclofenac from Aqueous Solutions and the Fate of by-Products. Catalysts, 2020, 10, 322.	1.6	7
329	Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 2020, 10, 5245-5255.	2.1	7
330	Modelling of kinetics, mass transfer and flow pattern on open foam structures in tubular reactors: Hydrogenation of arabinose and galactose on ruthenium catalyst. Chemical Engineering Science, 2021, 233, 116385.	1.9	7
331	Aqueous phase reforming of birch and pine hemicellulose hydrolysates. Bioresource Technology, 2022, 348, 126809.	4.8	7
332	Ultrasonic Irradiation in Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione. Reaction Kinetics and Catalysis Letters, 2001, 73, 3-11.	0.6	6
333	Support Effects in Nerol Hydrogenation over Pt/SiO2, Pt/H-Y and Pt/H-MCM-41 Catalysts. Catalysis Letters, 2004, 98, 173-179.	1.4	6
334	Modelling of Consecutive Reactions with a Semibatch Liquid Phase:Â Enhanced Kinetic Information by a New Experimental Concept. Industrial & Engineering Chemistry Research, 2007, 46, 3912-3921.	1.8	6
335	Utilization of cascade chemo-bio catalysis for the synthesis of R-1-phenylethyl acetate. Reaction Kinetics and Catalysis Letters, 2008, 94, 281-288.	0.6	6
336	Integrated modelling of reaction and catalyst deactivation kinetics—Hydrogenation of sitosterol to sitostanol over a palladium catalyst. Chemical Engineering Science, 2013, 104, 156-165.	1.9	6
337	Hydrogen peroxide obtained via direct synthesis as alternative raw material for ultrapurification process to produce electronic grade chemical. Journal of Chemical Technology and Biotechnology, 2016, 91, 1136-1148.	1.6	6
338	Dynamic modelling of homogeneously catalysed glycerol hydrochlorination in bubble column reactor. Chemical Engineering Science, 2016, 149, 277-295.	1.9	6
339	Application of an Extended Shrinking Film Model to Limestone Dissolution. Industrial & Engineering Chemistry Research, 2017, 56, 13254-13261.	1.8	6
340	Ketonization kinetics of stearic acid. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 601-610.	0.8	6
341	Catalytic activity of gold nanoparticles deposited on N-doped carbon-based supports in oxidation of glucose and arabinose mixtures. Research on Chemical Intermediates, 2021, 47, 2573.	1.3	6
342	Kinetic study of the carbonation of epoxidized fatty acid methyl ester catalyzed over heterogeneous catalyst HBimClâ€NbCl ₅ /HCMC. International Journal of Chemical Kinetics, 2021, 53, 1203-1219.	1.0	6

#	Article	IF	CITATIONS
343	Microwave Synthesis of Copper Phyllosilicates as Effective Catalysts for Hydrogenation of C≡C Bonds. Molecules, 2022, 27, 988.	1.7	6
344	Lipase catalyzed green epoxidation of oleic acid using ultrasound as a process intensification method. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108882.	1.8	6
345	Kinetic model for the synthesis of monochloroacetic acid. Chemical Engineering Science, 1988, 43, 1143-1151.	1.9	5
346	The role of acetyl chloride in the chlorination of acetic acid. Journal of Chemical Technology and Biotechnology, 1994, 61, 1-10.	1.6	5
347	Mechanism of the chemo–bio catalyzed cascade synthesis of R-1-phenylethyl acetate over Pd/Al2O3, lipase, and Ru-catalysts. Research on Chemical Intermediates, 2010, 36, 193-210.	1.3	5
348	Screening of potential complexing agents in methyl formate hydrolysis. Journal of Molecular Liquids, 2014, 196, 334-339.	2.3	5
349	Optimized H 2 O 2 production in a trickled bed reactor, using water and methanol enriched with selectivity promoters. Chemical Engineering Science, 2015, 123, 334-340.	1.9	5
350	Crystallization of Nano alcium Carbonate: The Influence of Process Parameters. Chemie-Ingenieur-Technik, 2016, 88, 1609-1616.	0.4	5
351	Complexation equilibria studies of alkyl formate hydrolysis in the presence of 1-butylimidazole. Thermochimica Acta, 2017, 652, 62-68.	1.2	5
352	Kinetics of ceria-catalysed ethene oxychlorination. Journal of Catalysis, 2019, 372, 287-298.	3.1	5
353	Intraparticle Modeling of Non-Uniform Active Phase Distribution Catalyst. ChemEngineering, 2020, 4, 24.	1.0	5
354	Modelling of transient kinetics in trickle bed reactors: Ethylene oxide production via hydrogen peroxide. Chemical Engineering Science, 2021, 248, 117156.	1.9	5
355	Catalytic Hydrogenation of Sugars. RSC Green Chemistry, 2015, , 89-133.	0.0	5
356	Alumina ceramic foams as catalyst supports. Catalysis, 0, , 28-50.	0.6	5
357	Competing commercial catalysts: Unprecedented catalyst activity and stability of Mizoroki-Heck reaction in a continuous packed bed reactor. Chemical Engineering Journal, 2022, 433, 134432.	6.6	5
358	Microwave-Assisted Conversion of Carbohydrates. Molecules, 2022, 27, 1472.	1.7	5
359	Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catalysis Letters, 2023, 153, 41-53.	1.4	5
360	Reaction mechanism and intrinsic kinetics of sugar hydrogenation to sugar alcohols on solid foam Ru/C catalysts – From arabinose and galactose to arabitol and galactitol. Chemical Engineering Science, 2022, 254, 117627.	1.9	5

#	Article	IF	CITATIONS
361	Selective Synthesis of .alphaChloropropanoic Acid. Industrial & Engineering Chemistry Research, 1995, 34, 1976-1993.	1.8	4
362	Kinetic analysis of the reaction network in the catalyzed polyesterification of unsaturated carboxylic acids. Chemical Engineering Science, 1996, 51, 2799-2804.	1.9	4
363	Optimization of the Reaction Conditions for Complex Kinetics in a Semibatch Reactor. Industrial & Engineering Chemistry Research, 1997, 36, 5196-5206.	1.8	4
364	Modelling of speciality chemicals production in liquid–liquid reactors—A case study: synthesis of diols. Chemical Engineering Science, 1999, 54, 1-18.	1.9	4
365	Enhancing consecutive reactions during three phase hydrogenation with a semibatch liquid phase. Chemical Engineering Journal, 2007, 134, 268-275.	6.6	4
366	Stability of hydrogen peroxide during perhydrolysis of carboxylic acids on acidic heterogeneous catalysts. Research on Chemical Intermediates, 2010, 36, 389-401.	1.3	4
367	Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts. Topics in Catalysis, 2014, 57, 1470-1475.	1.3	4
368	Kinetics of ethanol hydrochlorination over Î ³ -Al2O3 in a microstructured reactor. Chemical Engineering Science, 2015, 134, 681-693.	1.9	4
369	Continuous H ₂ O ₂ direct synthesis process: an analysis of the process conditions that make the difference. Green Processing and Synthesis, 2016, 5, 341-351.	1.3	4
370	Influence of the specific surface area and silver crystallite size of mesoporous Ag/SrTiO 3 on the selectivity enhancement of ethylene oxide production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3839-3849.	1.6	4
371	Technoâ€Economic Analysis for Production ofÂ <i>L</i> â€Arabitol from <i>L</i> â€Arabinose. Chemical Engineering and Technology, 2020, 43, 1260-1267.	0.9	4
372	Mathematical modelling of oleic acid epoxidation via a chemo-enzymatic route – From reaction mechanisms to reactor model. Chemical Engineering Science, 2022, 247, 117047.	1.9	4
373	Modeling and simulation of stationary catalytic processes. International Journal of Chemical Kinetics, 1989, 21, 885-908.	1.0	3
374	Kinetics of the chlorination of propanoic acid in the presence of chlorosulphonic acid. Chemical Engineering Science, 1995, 50, 2275-2288.	1.9	3
375	Kinetics and Mass Transfer of Organic Liquid-Phase Reactions in the Presence of a Sparingly Soluble Solid Phase. Organic Process Research and Development, 2000, 4, 323-332.	1.3	3
376	Preparation of dimethoxyborane and analysis by Fourier transform infrared spectroscopy. Research on Chemical Intermediates, 2007, 33, 645-654.	1.3	3
377	Kinetic modeling of lipaseâ€mediated oneâ€pot chemoâ€bio cascade synthesis of <i>R</i> â€lâ€phenyl ethyl ace starting from acetophenone. Journal of Chemical Technology and Biotechnology, 2010, 85, 192-198.	etate 1.6	3
378	Hydroformylation of 1-Butene on Rh Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 1325-1331.	1.8	3

#	Article	IF	CITATIONS
379	Kinetics and mass transfer in hydroformylation-bulk or film reaction?. Canadian Journal of Chemical Engineering, 2010, 88, n/a-n/a.	0.9	3
380	Kinetic and diffusion study of acid-catalyzed liquid-phase alkyl formates hydrolysis. Chemical Engineering Science, 2012, 69, 201-210.	1.9	3
381	Combination of Reaction and Separation in Heterogeneous Catalytic Hydrogenation of Ethylformate. Chemical Engineering and Technology, 2015, 38, 804-812.	0.9	3
382	Is selective hydrogenation of molecular oxygen to H2O2 affected by strong metal–support interactions on Pd/TiO2 catalysts? A case study using commercially available TiO2. Comptes Rendus Chimie, 2016, 19, 1011-1020.	0.2	3
383	3. Reaction intensification by microwave and ultrasound techniques in chemical multiphase systems. , 2017, , 111-142.		3
384	First, second and nth order autocatalytic kinetics in continuous and discontinuous reactors. Chemical Engineering Science, 2017, 172, 453-462.	1.9	3
385	Physical modeling of the laboratory-scale packed bed reactor for partial gas-phase oxidation of alcohol using gold nanoparticles as the heterogeneous catalyst. Chemical Engineering Research and Design, 2017, 117, 448-459.	2.7	3
386	Interaction of Intrinsic Kinetics, Catalyst Durability and Internal Mass Transfer in the Oxidation of Sugar Mixtures on Gold Nanoparticle Extrudates. Industrial & Engineering Chemistry Research, 2021, 60, 6483-6500.	1.8	3
387	Dynamic modelling of simultaneous reaction and distillation in a semibatch reactor system. Chemical Engineering Science, 1998, 53, 113-121.	1.9	2
388	Acid catalytic effects in the chlorination of propanoic acid. Journal of Chemical Technology and Biotechnology, 2000, 75, 89-97.	1.6	2
389	Catalysis Involving Multi-Centered Species on Nonuniform Surfaces, 2. Kinetics. Reaction Kinetics and Catalysis Letters, 2000, 70, 227-234.	0.6	2
390	Chemical Reaction Engineering of Biomass Conversion. Advances in Chemical Engineering, 2013, 42, 195-260.	0.5	2
391	Kinetic Modeling of Ethyl Benzoylformate Enantioselective Hydrogenation over Pt/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2014, 53, 11945-11953.	1.8	2
392	Optimization of Photooxidative Removal of Phenazopyridine from Water. Russian Journal of Physical Chemistry A, 2018, 92, 876-883.	0.1	2
393	Modelling of a liquid-liquid-solid-gas system: Hydrogenation of dispersed liquid sodium to sodium hydride. Chemical Engineering Journal, 2019, 356, 445-452.	6.6	2
394	Advanced Shrinking Particle Model for Fluid-Reactive Solid Systems. Frontiers in Chemical Engineering, 2020, 2, .	1.3	2
395	Tuned Bis-Layered Supported Ionic Liquid Catalyst (SILCA) for Competitive Activity in the Heck Reaction of Iodobenzene and Butyl Acrylate. Catalysts, 2020, 10, 963.	1.6	2
396	Understanding of Solid-Fluid Kinetics and Mass Transfer: From Ideal to Non-ideal Models, From Perfect Spheres to Moon Landscape. Frontiers in Chemical Engineering, 2020, 2, .	1.3	2

#	Article	IF	CITATIONS
397	Process Synthesis and Process Intensification. , 2017, , .		2
398	A new perspective on vegetable oil epoxidation modeling: Reaction and mass transfer in a liquid–liquid–solid system. AICHE Journal, 0, , .	1.8	2
399	Revealing the role of stabilizers in H2O2 for the peroxyformic acid synthesis and decomposition kinetics. Chemical Engineering Science, 2022, 251, 117488.	1.9	2
400	Modeling of threeâ€phase continuously operating openâ€cell foam catalyst packings: Sugar hydrogenation to sugar alcohols. AICHE Journal, 2022, 68, .	1.8	2
401	A novel approach to inulin depolymerization: A Monte Carlo based model. Chemical Engineering Science, 2022, 256, 117712.	1.9	2
402	Catalytic conversion of glucose to methyl levulinate over metal-modified Beta zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1971-1986.	0.8	2
403	Factorization of reaction systems applied to catalytic reactions. Chemical Engineering Science, 1990, 45, 237-241.	1.9	1
404	Parallel hydrogenation of 2,2-dimethylol-1-butanal and formaldehyde over supported NiCr and CuCr catalysts. Journal of Chemical Technology and Biotechnology, 2002, 77, 533-538.	1.6	1
405	Preface to the CAMURE 8 & ISMR 7 Special Issue. Industrial & Engineering Chemistry Research, 2012, 51, 8709-8710.	1.8	1
406	Sugar hydrogenation–combined heat and mass transfer. Computer Aided Chemical Engineering, 2013, 32, 67-72.	0.3	1
407	Enantioselective Hydrogenation of Ethyl Benzoylformate, from Mechanism and Kinetics to Continuous Reactor Technology. Topics in Catalysis, 2014, 57, 1576-1581.	1.3	1
408	Microreactor technology for on-site production of methyl chloride. Green Processing and Synthesis, 2014, 3, .	1.3	1
409	Comparative Study of Reactive Flash Distillation vs Semibatch Reactor Technologies for the Glycerol Hydrochlorination with Gaseous HCl. Industrial & Engineering Chemistry Research, 2016, 55, 5500-5513.	1.8	1
410	Kinetic Modeling. , 2016, , 665-721.		1
411	Dynamic Catalysis. , 2016, , 497-587.		1
412	Determination of kinetics and equilibria of heterogeneously catalyzed gas-phase reactions in gradientless autoclave reactors by using the total pressure method: Methanol synthesis. Chemical Engineering Science, 2020, 215, 115393.	1.9	1
413	A Robust Method for the Estimation of Kinetic Parameters for Systems Including Slow and Rapid Reactions—From Differential-Algebraic Model to Differential Model. Processes, 2020, 8, 1552.	1.3	1
414	Intraparticle Model for Non-Uniform Active Phase Distribution Catalysts in a Batch Reactor. ChemEngineering, 2021, 5, 38.	1.0	1

#	Article	IF	CITATIONS
415	Reactor Selection for Upgrading Hemicelluloses: Conventional and Miniaturised Reactors for Hydrogenations. Processes, 2021, 9, 1558.	1.3	1
416	Modelling of complex liquid–solid reaction systems in semibatch reactors: Claisen condensation in	1.9	0
417	Hydrogenation of Citral Over Ni on Monolith. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	0
418	ANN modeling applied to NO x reduction with octane in a new microreactor. Topics in Catalysis, 2007, 42-43, 195-198.	1.3	0
419	15th Nordic Symposium on Catalysis, Mariehamn, Åland, June 16–18, 2012. Topics in Catalysis, 2013, 56, 511-511.	1.3	0
420	7. Design and modeling of laboratory scale three-phase fixed bed reactors. , 2015, , 283-332.		0
421	Factors Influencing Hydrogenation and Decomposition of H2O2 Over Pd–Au Catalysts Supported on Activated Carbon Cloth (ACC). Topics in Catalysis, 2015, 58, 1019-1035.	1.3	0
422	Design and modeling of laboratory scale three-phase fixed bed reactors. Physical Sciences Reviews, 2016, 1, .	0.8	0
423	Mass Transfer and Catalytic Reactions. , 2016, , 589-664.		0
424	A Simulation Case Study for Bio-based Hydrogen Production from Hardwood Hemicellulose. Computer Aided Chemical Engineering, 2020, 48, 1735-1740.	0.3	0
425	Application of semibatch technology on the investigation of homogeneously catalyzed consecutive and parallel-consecutive liquid-phase reactions: Kinetic measurements and modelling. Chemical Engineering Science, 2021, 233, 116397.	1.9	0
426	Model Discrimination for Hydrogen Peroxide Consumption towards Î ³ -Alumina in Homogeneous Liquid and Heterogeneous Liquid-Liquid Systems. Processes, 2021, 9, 1476.	1.3	0
427	Selective Oxidation of Arabinose on Gold Catalysts: Process Design and Technoâ€economic Assessment. Chemical Engineering and Technology, 2021, 44, 1775-1782.	0.9	0
428	Mass Transfer in a Porous Particle – MCMC Assisted Parameter Estimation of Dynamic Model under Uncertainties. Computer Aided Chemical Engineering, 2014, , 277-282.	0.3	0