Craig A Taatjes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Kinetic Measurements of Criegee Intermediate (CH ₂ OO) Formed by Reaction of CH ₂ I with O ₂ . Science, 2012, 335, 204-207.	12.6	649
2	Kinetics of elementary reactions in low-temperature autoignition chemistry. Progress in Energy and Combustion Science, 2011, 37, 371-421.	31.2	586
3	Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH ₃ CHOO. Science, 2013, 340, 177-180.	12.6	379
4	Enols Are Common Intermediates in Hydrocarbon Oxidation. Science, 2005, 308, 1887-1889.	12.6	306
5	Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 2005, 247, 18-27.	1.5	289
6	Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Physical Chemistry Chemical Physics, 2014, 16, 1704.	2.8	244
7	The physical chemistry of Criegee intermediates in the gas phase. International Reviews in Physical Chemistry, 2015, 34, 309-360.	2.3	221
8	Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications. Angewandte Chemie - International Edition, 2014, 53, 4547-4550.	13.8	219
9	Studies of a fuel-rich propane flame with photoionization mass spectrometry. Proceedings of the Combustion Institute, 2005, 30, 1681-1688.	3.9	210
10	The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics. Review of Scientific Instruments, 2008, 79, 104103.	1.3	190
11	Direct Observation of the Gas-Phase Criegee Intermediate (CH ₂ OO). Journal of the American Chemical Society, 2008, 130, 11883-11885.	13.7	189
12	"lmaging―combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. Physical Chemistry Chemical Physics, 2008, 10, 20-34.	2.8	185
13	Measurements, Theory, and Modeling of OH Formation in Ethyl + O2 and Propyl + O2 Reactions. Journal of Physical Chemistry A, 2003, 107, 4415-4427.	2.5	160
14	Identification and Chemistry of C4H3and C4H5Isomers in Fuel-Rich Flames. Journal of Physical Chemistry A, 2006, 110, 3670-3678.	2.5	143
15	Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Physical Chemistry Chemical Physics, 2012, 14, 10391.	2.8	143
16	Detection and Identification of the Keto-Hydroperoxide (HOOCH ₂ OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7361-7374.	2.5	143
17	Criegee intermediates and their impacts on the troposphere. Environmental Sciences: Processes and Impacts, 2018, 20, 437-453.	3.5	136
18	Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH). Science, 2015, 347, 643-646.	12.6	130

#	Article	IF	CITATIONS
19	Role of peroxy chemistry in the high-pressure ignition of n-butanol – Experiments and detailed kinetic modelling. Combustion and Flame, 2011, 158, 1444-1455.	5.2	121
20	Synchrotron photoionization measurements of combustion intermediates: Photoionization efficiency and identification of C3H2 isomers. Physical Chemistry Chemical Physics, 2005, 7, 806.	2.8	113
21	Uncovering the Fundamental Chemistry of Alkyl + O2Reactions via Measurements of Product Formation. Journal of Physical Chemistry A, 2006, 110, 4299-4312.	2.5	106
22	Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals. Physical Review A, 2006, 73, .	2.5	106
23	Quantification of the Keto-Hydroperoxide (HOOCH ₂ OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2016, 120, 7890-7901.	2.5	104
24	Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Faraday Discussions, 2013, 165, 45.	3.2	103
25	Kinetics of Cl Atom Reactions with Methane, Ethane, and Propane from 292 to 800 K. Journal of Physical Chemistry A, 1997, 101, 1873-1880.	2.5	102
26	Initial Steps of Aromatic Ring Formation in a Laminar Premixed Fuel-Rich Cyclopentene Flameâ€. Journal of Physical Chemistry A, 2007, 111, 4081-4092.	2.5	102
27	Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere. ACS Earth and Space Chemistry, 2018, 2, 833-842.	2.7	102
28	Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Annual Review of Physical Chemistry, 2017, 68, 183-207.	10.8	98
29	Combustion Chemistry of Enols:  Possible Ethenol Precursors in Flames. Journal of Physical Chemistry A, 2006, 110, 3254-3260.	2.5	96
30	Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. Combustion and Flame, 2016, 164, 386-396.	5.2	94
31	Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 2007, 9, 4315.	2.8	92
32	Products of the Benzene + O(³ P) Reaction. Journal of Physical Chemistry A, 2010, 114, 3355-3370.	2.5	92
33	Combustion chemistry of the propanol isomers — investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry. Combustion and Flame, 2009, 156, 1181-1201.	5.2	91
34	The reaction of hydroxyethyl radicals with O2: A theoretical analysis and experimental product study. Proceedings of the Combustion Institute, 2009, 32, 271-277.	3.9	90
35	Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 2007, 31, 565-573.	3.9	89
36	Absolute Photoionization Cross-Section of the Methyl Radical. Journal of Physical Chemistry A, 2008, 112, 9336-9343.	2.5	89

#	Article	IF	CITATIONS
37	Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550) Tj ETQq1 1	0.784314 rgE 2.8	3T/Overlock
38	Energy-Resolved Photoionization of Alkylperoxy Radicals and the Stability of Their Cations. Journal of the American Chemical Society, 2006, 128, 13559-13567.	13.7	87
39	Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH ₃) ₂ COO. Journal of Physical Chemistry A, 2017, 121, 4-15.	2.5	87
40	Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV.For Part III see ref. 12. Reactions of propyl and butyl radicals with O2Electronic Supplementary Information available. See http://www.rsc.org/suppdata/fd/b1/b102237g/. Faraday Discussions, 2001, 119, 101-120.	3.2	86
41	Absolute photoionization cross-section of the propargyl radical. Journal of Chemical Physics, 2012, 136, 134307.	3.0	86
42	The reaction of Criegee intermediate CH ₂ OO with water dimer: primary products and atmospheric impact. Physical Chemistry Chemical Physics, 2017, 19, 21970-21979.	2.8	83
43	Direct detection of polyynes formation from the reaction of ethynyl radical (C2H) with propyne (CH3–Cî€,CH) and allene (CH2î€Cî€CH2). Physical Chemistry Chemical Physics, 2007, 9, 4291-4300.	2.8	79
44	Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons. Journal of the American Chemical Society, 2009, 131, 993-1005.	13.7	77
45	Formally direct pathways and low-temperature chain branching in hydrocarbon autoignition: the cyclohexyl + O2 reaction at high pressure. Physical Chemistry Chemical Physics, 2009, 11, 1320.	2.8	76
46	Infrared Frequency-Modulation Probing of Product Formation in Alkyl + O2 Reactions:  I. The Reaction of C2H5 with O2 between 295 and 698 K. Journal of Physical Chemistry A, 2000, 104, 11549-11560.	2.5	73
47	VUV Photoionization Cross Sections of HO ₂ , H ₂ O ₂ , and H ₂ CO. Journal of Physical Chemistry A, 2015, 119, 1279-1291.	2.5	66
48	The influence of ethanol addition on premixed fuel-rich propene–oxygen–argon flames. Proceedings of the Combustion Institute, 2007, 31, 1119-1127.	3.9	64
49	Photoionization mass spectrometric studies and modeling of fuel-rich allene and propyne flames. Proceedings of the Combustion Institute, 2007, 31, 1157-1164.	3.9	63
50	Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9733-9740.	7.1	63
51	Quantum Interference as the Source of Steric Asymmetry and Parity Propensity Rules in NOâ^'Rare Gas Inelastic Scattering. Journal of the American Chemical Society, 2006, 128, 8777-8789.	13.7	61
52	Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD. Journal of Chemical Physics, 2015, 142, 164201.	3.0	60
53	Directly measuring reaction kinetics of ˙QOOH – a crucial but elusive intermediate in hydrocarbon autoignition. Physical Chemistry Chemical Physics, 2013, 15, 10753.	2.8	58
54	Influence of functional groups on low-temperature combustion chemistry of biofuels. Progress in Energy and Combustion Science, 2021, 86, 100925.	31.2	58

#	Article	IF	CITATIONS
55	Reaction of the C ₂ H Radical with 1-Butyne (C ₄ H ₆): Low-Temperature Kinetics and Isomer-Specific Product Detection. Journal of Physical Chemistry A, 2010, 114, 3340-3354.	2.5	57
56	Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics. Journal of Physical Chemistry A, 2010, 114, 1749-1755.	2.5	56
57	Criegee intermediates: production, detection and reactivity. International Reviews in Physical Chemistry, 2020, 39, 385-424.	2.3	56
58	Atmospheric transformation of enols: A potential secondary source of carboxylic acids in the urban troposphere. Geophysical Research Letters, 2007, 34, .	4.0	55
59	Diode laser probing of I*(2P1/2) Doppler profiles: Time evolution of a fast, anisotropic velocity distribution in a thermal bath. Journal of Chemical Physics, 1990, 93, 6543-6553.	3.0	54
60	Absolute and Site-Specific Abstraction Rate Coefficients for Reactions of Cl with CH3CH2OH, CH3CD2OH, and CD3CH2OH between 295 and 600 K. Journal of Physical Chemistry A, 1999, 103, 9805-9814.	2.5	54
61	Spectroscopy of the Simplest Criegee Intermediate CH ₂ OO: Simulation of the First Bands in Its Electronic and Photoelectron Spectra. Chemistry - A European Journal, 2012, 18, 12411-12423.	3.3	54
62	A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi. Combustion and Flame, 2014, 161, 711-724.	5.2	54
63	Infrared Frequency-Modulation Probing of Product Formation in Alkyl + O2Reactions:Â II. The Reaction of C3H7with O2between 296 and 683 K. Journal of Physical Chemistry A, 2001, 105, 3205-3213.	2.5	53
64	Temperature controlled multiple pass absorption cell for gas phase chemical kinetics studies. Review of Scientific Instruments, 1997, 68, 1875-1878.	1.3	52
65	New mechanistic insights to the O(3P) + propene reaction from multiplexed photoionization mass spectrometry. Physical Chemistry Chemical Physics, 2012, 14, 10410.	2.8	51
66	Time-resolved infrared absorption measurements of product formation in Cl atom reactions with alkenes and alkynes. International Reviews in Physical Chemistry, 1999, 18, 419-458.	2.3	50
67	Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction. Physical Chemistry Chemical Physics, 2010, 12, 8750.	2.8	49
68	Probing the low-temperature chain-branching mechanism of n -butane autoignition chemistry via time-resolved measurements of ketohydroperoxide formation in photolytically initiated n- C 4 H 10 oxidation. Proceedings of the Combustion Institute, 2015, 35, 291-298.	3.9	48
69	Infrared Laser Absorption Measurements of the Kinetics of Propargyl Radical Self-Reaction and the 193 nm Photolysis of Propyne. Journal of Physical Chemistry A, 2003, 107, 4843-4850.	2.5	47
70	Infrared Absorption Probing of the Cl + C3H6 Reaction:  Rate Coefficients for HCl Production between 290 and 800 K. Journal of Physical Chemistry A, 1997, 101, 5776-5782.	2.5	46
71	Pressure-Dependent I-Atom Yield in the Reaction of CH ₂ I with O ₂ Shows a Remarkable Apparent Third-Body Efficiency for O ₂ . Journal of Physical Chemistry Letters, 2012, 3, 3399-3403.	4.6	46
72	Low-temperature combustion chemistry of biofuels: Pathways in the low-temperature (550–700K) oxidation chemistry of isobutanol and tert-butanol. Proceedings of the Combustion Institute, 2013, 34, 493-500.	3.9	46

#	Article	IF	CITATIONS
73	Experimental and computational studies of Criegee intermediate reactions with NH ₃ and CH ₃ NH ₂ . Physical Chemistry Chemical Physics, 2019, 21, 14042-14052.	2.8	46
74	The vinyl radical (Ã2A″â† x ̃2A′) spectrum between 530 and 415 nm measured by cavity ring-down spectroscopy. Journal of Chemical Physics, 1999, 110, 1841-1843.	3.0	45
75	A general method for Doppler determination of cylindrically symmetric velocity distributions: An application of Fourier transform Doppler spectroscopy. Journal of Chemical Physics, 1990, 93, 6554-6559.	3.0	44
76	High-resolution diode laser absorption spectroscopy of the O–H stretch overtone band (2,0,0)â†(0,0,0) of the HO2 radical. Journal of Molecular Spectroscopy, 2003, 219, 163-169.	1.2	43
77	Deuterium Kinetic Isotope Effect and Temperature Dependence in the Reactions of CH[2Î] with Methane and Acetylene. Journal of Physical Chemistry A, 1997, 101, 1881-1886.	2.5	42
78	Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2) Self-Reaction. Journal of Physical Chemistry A, 2008, 112, 9366-9373.	2.5	42
79	Low-Temperature Combustion Chemistry of <i>n-</i> Butanol: Principal Oxidation Pathways of Hydroxybutyl Radicals. Journal of Physical Chemistry A, 2013, 117, 11983-12001.	2.5	40
80	Pressure-Dependent Competition among Reaction Pathways from First- and Second-O ₂ Additions in the Low-Temperature Oxidation of Tetrahydrofuran. Journal of Physical Chemistry A, 2016, 120, 6582-6595.	2.5	40
81	Time-resolved wavelength modulation spectroscopy measurements of HO_2 kinetics. Applied Optics, 1997, 36, 5817.	2.1	39
82	Measurements and Modeling of HO2Formation in the Reactions ofn-C3H7andi-C3H7Radicals with O2â€. Journal of Physical Chemistry B, 2005, 109, 8374-8387.	2.6	38
83	Photoionization of 1-Alkenylperoxy and Alkylperoxy Radicals and a General Rule for the Stability of Their Cations. Journal of the American Chemical Society, 2007, 129, 14019-14025.	13.7	38
84	Unconventional Peroxy Chemistry in Alcohol Oxidation: The Water Elimination Pathway. Journal of Physical Chemistry Letters, 2013, 4, 350-354.	4.6	38
85	Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical. Journal of Physical Chemistry Letters, 2015, 6, 4153-4158.	4.6	38
86	Products of Criegee intermediate reactions with NO ₂ : experimental measurements and tropospheric implications. Faraday Discussions, 2017, 200, 313-330.	3.2	38
87	Infrared Absorption Probing of the Cl + C2H4 Reaction:  Direct Measurement of Arrhenius Parameters for Hydrogen Abstraction. Journal of Physical Chemistry A, 1997, 101, 4172-4177.	2.5	37
88	RECENTPROGRESS ININFRAREDABSORPTIONTECHNIQUES FORELEMENTARYGAS-PHASEREACTIONKINETICS. Annual Review of Physical Chemistry, 2001, 52, 41-70.	10.8	37
89	Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. Journal of Physical Chemistry A, 2015, 119, 7095-7115.	2.5	37
90	Synchrotron photoionization measurements of combustion intermediates: the photoionization efficiency of HONO. Chemical Physics Letters, 2004, 394, 19-24.	2.6	36

#	Article	IF	CITATIONS
91	Research needs for future internal combustion engines. Physics Today, 2008, 61, 47-52.	0.3	36
92	New experiments and validated master-equation modeling for OH production in propyl+O2 reactions. Proceedings of the Combustion Institute, 2011, 33, 293-299.	3.9	35
93	Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Î1/2) with He. Journal of Chemical Physics, 2004, 121, 11691-11701.	3.0	34
94	Isomer-specific product detection of CN radical reactions with ethene and propene by tunable VUV photoionization mass spectrometry. International Journal of Mass Spectrometry, 2009, 280, 113-118.	1.5	34
95	Laser doubleâ€resonance mesurements of rotational relaxation rates of HF( J=13) with rare gases, H2, and D2. Journal of Chemical Physics, 1988, 89, 302-308.	3.0	33
96	Two-Dimensional Imaging of the Photolysis of Oriented Molecules. The Journal of Physical Chemistry, 1995, 99, 4360-4363.	2.9	33
97	Synchrotron Photoionization Mass Spectrometry Measurements of Product Formation in Low-Temperature <i>n</i> -Butane Oxidation: Toward a Fundamental Understanding of Autoignition Chemistry and <i>n</i> -C ₄ H ₉ + O ₂ Reactions. Journal of Physical	2.5	33
98	Chemistry A, 2010, 117, 12216 12205. Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: tetrahydropyran and cyclohexane. Proceedings of the Combustion Institute, 2017, 36, 597-606.	3.9	33
99	Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae. PLoS ONE, 2016, 11, e0146983.	2.5	33
100	Infrared laser absorption measurements of HCl(v=1) production in reactions of Cl atoms with isobutane, methanol, acetaldehyde, and toluene at 295 K. Chemical Physics Letters, 2002, 366, 417-425.	2.6	32
101	Time-resolved measurements of OH and HO2 product formation in pulsed-photolytic chlorine atom initiated oxidation of neopentane. Physical Chemistry Chemical Physics, 2003, 5, 1584-1592.	2.8	32
102	New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling. Journal of Physical Chemistry A, 2015, 119, 7116-7129.	2.5	32
103	The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol. Nature Communications, 2018, 9, 4343.	12.8	32
104	Measurements and Modeling of DO2Formation in the Reactions of C2D5and C3D7Radicals with O2â€. Journal of Physical Chemistry A, 2007, 111, 4015-4030.	2.5	31
105	Infrared Frequency-Modulation Probing of Cl + C3H4(Allene, Propyne) Reactions:Â Kinetics of HCl Production from 292 to 850 K. Journal of Physical Chemistry A, 1998, 102, 4846-4856.	2.5	30
106	Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. Journal of Physical Chemistry A, 2020, 124, 3542-3554.	2.5	30
107	Polarizationâ€resolved (2+1) resonanceâ€enhanced multiphoton ionization spectroscopy of CF3I (6s) Rydberg states. Journal of Chemical Physics, 1993, 98, 4355-4371.	3.0	29
108	Measurements and Automated Mechanism Generation Modeling of OH Production in Photolytically Initiated Oxidation of the Neopentyl Radical‗. Journal of Physical Chemistry A, 2007, 111, 3891-3900.	2.5	29

#	Article	IF	CITATIONS
109	Product Detection of the CH Radical Reaction with Acetaldehyde. Journal of Physical Chemistry A, 2012, 116, 6091-6106.	2.5	29
110	Temperature Dependence and Deuterium Kinetic Isotope Effects in the CH (CD) + C2H4(C2D4) Reaction between 295 and 726 K. Journal of Physical Chemistry A, 2001, 105, 5393-5401.	2.5	28
111	How does the molecular velocity distribution affect kinetics measurements by timeâ€resolved mass spectrometry?. International Journal of Chemical Kinetics, 2007, 39, 565-570.	1.6	28
112	Infrared Frequency-Modulation Probing of Product Formation in Alkyl + O2Reactions:Â III. The Reaction of Cyclopentyl Radical (c-C5H9) with O2between 296 and 723 K. Journal of Physical Chemistry A, 2001, 105, 6646-6654.	2.5	27
113	Temperature dependence and deuterium kinetic isotope effects in the HCO(DCO)+O2 reaction between 296 and 673 K. Chemical Physics Letters, 2001, 347, 79-86.	2.6	27
114	Vinyl radical visible spectroscopy and excited state dynamics. Journal of Chemical Physics, 2002, 116, 8343.	3.0	27
115	Measurements and Quasi-Quantum Modeling of the Steric Asymmetry and Parity Propensities in State-to-State Rotationally Inelastic Scattering of NO (2Î1/2) with D2â€. Journal of Physical Chemistry A, 2007, 111, 7631-7639.	2.5	27
116	Temperature-Dependent Kinetics of the Vinyl Radical (C ₂ H ₃) Self-Reaction. Journal of Physical Chemistry A, 2009, 113, 1278-1286.	2.5	27
117	Hydroxyacetone Production From C ₃ Criegee Intermediates. Journal of Physical Chemistry A, 2017, 121, 16-23.	2.5	27
118	Rotational excitation in scattering of hyperthermal NO from Pt(111). Journal of Chemical Physics, 1995, 102, 3835-3847.	3.0	26
119	Infrared frequency-modulation measurements of absolute rate coefficients for Cl+HD→HCl(DCl)+D(H) between 295 and 700 K. Chemical Physics Letters, 1999, 306, 33-40.	2.6	26
120	Kinetics of the reaction of vinyl radicals with NO: Ab initio theory, master equation predictions, and laser absorption measurements. Physical Chemistry Chemical Physics, 2004, 6, 2216-2223.	2.8	25
121	Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone. Physical Chemistry Chemical Physics, 2014, 16, 13027-13040.	2.8	25
122	Kinetic Isotope Effects and Variable Reaction Coordinates in Barrierless Recombination Reactions. Journal of Physical Chemistry A, 2001, 105, 8567-8578.	2.5	24
123	Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: a combined neutral and distonic radical study. Physical Chemistry Chemical Physics, 2016, 18, 4320-4332.	2.8	24
124	Influence of the Ether Functional Group on Ketohydroperoxide Formation in Cyclic Hydrocarbons: Tetrahydropyran and Cyclohexane. Journal of Physical Chemistry A, 2019, 123, 3634-3646.	2.5	23
125	Dynamical information in angular distributions of fragments from photolysis of oriented molecules. Chemical Physics Letters, 1993, 203, 363-370.	2.6	22
126	Temperature dependence of the reaction C2H (C2D) + O2 between 295 and 700 K. Chemical Physics Letters, 1997, 270, 580-586.	2.6	22

#	Article	IF	CITATIONS
127	Isomer-Selective Study of the OH Initiated Oxidation of Isoprene in the Presence of O ₂ and NO. I. The Minor Inner OH-Addition Channel. Journal of Physical Chemistry A, 2010, 114, 904-912.	2.5	22
128	Formation of dimethylketene and methacrolein by reaction of the CH radical with acetone. Physical Chemistry Chemical Physics, 2013, 15, 4049.	2.8	22
129	Product Branching Fractions of the CH + Propene Reaction from Synchrotron Photoionization Mass Spectrometry. Journal of Physical Chemistry A, 2013, 117, 6450-6457.	2.5	22
130	Kinetic Isotope Effect in the CH[2Î] + O2Reaction. The Journal of Physical Chemistry, 1996, 100, 17840-17845.	2.9	21
131	̇QOOH-mediated reactions in cyclohexene oxidation. Proceedings of the Combustion Institute, 2019, 37, 323-335.	3.9	21
132	Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids. Environmental Science & Technology, 2019, 53, 1245-1251.	10.0	21
133	Product Formation in the Cl-Initiated Oxidation of Cyclopropane. Journal of Physical Chemistry A, 2003, 107, 1992-2002.	2.5	20
134	Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethyleneâ€. Journal of Physical Chemistry A, 2007, 111, 6843-6851.	2.5	20
135	Absolute photoionization cross-sections of selected furanic and lactonic potential biofuels. International Journal of Mass Spectrometry, 2013, 348, 39-46.	1.5	20
136	Time-resolved measurements of product formation in the low-temperature (550–675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism. Physical Chemistry Chemical Physics, 2017, 19, 13731-13745.	2.8	20
137	Direct kinetics study of CH ₂ OO + methyl vinyl ketone and CH ₂ OO + methacrolein reactions and an upper limit determination for CH ₂ OO + CO reaction. Physical Chemistry Chemical Physics, 2018, 20, 19373-19381.	2.8	20
138	Vacuum ultraviolet photoionization cross section of the hydroxyl radical. Journal of Chemical Physics, 2018, 148, 184302.	3.0	20
139	Reaction mechanisms of a cyclic ether intermediate: Ethyloxirane. International Journal of Chemical Kinetics, 2021, 53, 43-59.	1.6	20
140	Rotational rainbows in NO scattering from Pt(111). Faraday Discussions, 1993, 96, 297.	3.2	19
141	Ultraviolet photodissociation of vinyl iodide: understanding the halogen dependence of photodissociation mechanisms in vinyl halides. Physical Chemistry Chemical Physics, 2008, 10, 713-728.	2.8	19
142	Photoionization Mass Spectrometric Measurements of Initial Reaction Pathways in Low-Temperature Oxidation of 2,5-Dimethylhexane. Journal of Physical Chemistry A, 2014, 118, 10188-10200.	2.5	19
143	Investigating the Tropospheric Chemistry of Acetic Acid Using the Global 3â€D Chemistry Transport Model, STOCHEMâ€CRI. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6267-6281.	3.3	19
144	Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth and Space Chemistry, 2021, 5, 849-857.	2.7	19

#	Article	IF	CITATIONS
145	Efficient and stable operation of an Ar+-pumped continuous-wave ring laser from 505–560 nm using a coumarin laser dye. Review of Scientific Instruments, 2001, 72, 2837-2838.	1.3	18
146	Ultraviolet photochemistry of trichlorovinylsilane and allyltrichlorosilane: vinyl radical (HCCH2) and allyl radical (H2CCHCH2) production in 193 nm photolysis. Physical Chemistry Chemical Physics, 2006, 8, 2240.	2.8	18
147	Enol Formation and Ring-Opening in OH-Initiated Oxidation of Cycloalkenes. Journal of Physical Chemistry A, 2008, 112, 13444-13451.	2.5	18
148	Facile Rearrangement of 3-Oxoalkyl Radicals is Evident in Low-Temperature Gas-Phase Oxidation of Ketones. Journal of the American Chemical Society, 2013, 135, 14256-14265.	13.7	18
149	Seasonality of Formic Acid (HCOOH) in London during the ClearfLo Campaign. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,488.	3.3	18
150	Synchrotron Photoionization Measurements of OH-Initiated Cyclohexene Oxidation: Ring-Preserving Products in OH + Cyclohexene and Hydroxycyclohexyl + O ₂ Reactions. Journal of Physical Chemistry A, 2012, 116, 6720-6730.	2.5	17
151	Low temperature (550–700 K) oxidation pathways of cyclic ketones: dominance of HO ₂ -elimination channels yielding conjugated cyclic coproducts. Physical Chemistry Chemical Physics, 2015, 17, 12124-12134.	2.8	17
152	Isomerâ€dependent reaction mechanisms of cyclic ether intermediates: <i>cis</i> â€2,3â€dimethyloxirane and <i>trans</i> â€2,3â€dimethyloxirane. International Journal of Chemical Kinetics, 2021, 53, 127-145.	1.6	17
153	Experimental Observation of Hydrocarbon Growth by Resonanceâ€6tabilized Radical–Radical Chain Reaction. Angewandte Chemie - International Edition, 2021, 60, 27230-27235.	13.8	17
154	Association and isotopic exchange reactions of CH(CD)[X 2Î]+CO. Journal of Chemical Physics, 1997, 106, 1786-1795.	3.0	16
155	Formation of fulvene in the reaction of C2H with 1,3-butadiene. International Journal of Mass Spectrometry, 2015, 378, 232-245.	1.5	16
156	Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules, 2021, 26, 3058.	3.8	16
157	Survival mechanism for rotational rainbows in highly attractive molecule-surface systems: NO scattering from Pt(111). Chemical Physics Letters, 1993, 216, 93-99.	2.6	15
158	Branching Fractions of the CN + C ₃ H ₆ Reaction Using Synchrotron Photoionization Mass Spectrometry: Evidence for the 3-Cyanopropene Product. Journal of Physical Chemistry A, 2011, 115, 13467-13473.	2.5	14
159	Competing Channels in the Propene + OH Reaction: Experiment and Validated Modeling over a Broad Temperature and Pressure Range. Zeitschrift Fur Physikalische Chemie, 2011, 225, 1271-1291.	2.8	14
160	Synchrotron Photoionization Study of Mesitylene Oxidation Initiated by Reaction with Cl(² P) or O(³ P) Radicals. Journal of Physical Chemistry A, 2014, 118, 3735-3748.	2.5	14
161	Multiplexed Photoionization Mass Spectrometry Investigation of the O(³ P) + Propyne Reaction. Journal of Physical Chemistry A, 2015, 119, 7388-7403.	2.5	14
162	Kinetics of Elementary Reactions in the Chain Chlorination of Cyclopropane. Journal of Physical Chemistry A, 2003, 107, 2003-2010.	2.5	13

#	Article	IF	CITATIONS
163	Detection of pentatetraene by reaction of the ethynyl radical (C2H) with allene (CH2H2) at room temperature. Physical Chemistry Chemical Physics, 2011, 13, 20820.	2.8	13
164	Isomer Specific Product Detection in the Reaction of CH with Acrolein. Journal of Physical Chemistry A, 2013, 117, 11013-11026.	2.5	13
165	Criegee intermediates in the indoor environment: new insights. Indoor Air, 2014, 24, 495-502.	4.3	13
166	Direct measurement of ˙OH and HO ₂ ˙ formation in ˙R + O ₂ reactions of cyclohexane and tetrahydropyran. Physical Chemistry Chemical Physics, 2018, 20, 10815-10825.	2.8	13
167	Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Physical Chemistry Chemical Physics, 2020, 22, 26796-26805.	2.8	13
168	Laser double-resonance studies of low-temperature rotational and vibrational relaxation of hydrogen fluoride: rates for hydrogen fluoride (J = 13) + hydrogen fluoride from 225 to 298 K and detection of hydrogen fluoride (v = 1) deactivation by hydrogen fluoride clusters at 210-240 K. The Journal of Physical Chemistry, 1991, 95, 5870-5877.	2.9	11
169	â€~â€~Dynamical'' versus â€~â€~statistical'' rotational distributions in hyperthermal NO–Pt(1 Journal of Chemical Physics, 1995, 102, 3848-3859.	11) scatter 3.0	ring ₁₁
170	Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature (400–625 K) Oxidation of Diethyl Ketone. Journal of Physical Chemistry A, 2016, 120, 8625-8636.	2.5	11
171	Mode-selective broadening in low-frequency vibrational modes of trans-stilbene van der waals complexes. Chemical Physics Letters, 1986, 128, 127-132.	2.6	10
172	Vibrational and rotational effects on fragmentation of CF3I via (2+1) resonance-enhanced multiphoton ionization. Chemical Physics Letters, 1993, 216, 100-107.	2.6	10
173	Analysis of flame structure by molecular-beam mass spectrometry using electron-impact and synchrotron-photon ionization. Combustion, Explosion and Shock Waves, 2006, 42, 672-677.	0.8	9
174	Note: Absolute photoionization cross-section of the vinyl radical. Journal of Chemical Physics, 2013, 139, 056101.	3.0	9
175	Synchrotron photoionization measurements of fundamental autoignition reactions: Product formation in low-temperature isobutane oxidation. Proceedings of the Combustion Institute, 2013, 34, 385-392.	3.9	8
176	Hexapole transmission spectrum of formaldehyde oxide. Chemical Physics Letters, 2014, 598, 96-101.	2.6	8
177	Product detection study of the gas-phase oxidation of methylphenyl radicals using synchrotron photoionisation mass spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 17939-17949.	2.8	8
178	The impact of the third O2 addition reaction network on ignition delay times of neo-pentane. Proceedings of the Combustion Institute, 2021, 38, 299-307.	3.9	8
179	Absolute Photoionization Cross Section of the Simplest Enol, Vinyl Alcohol. Journal of Physical Chemistry A, 2021, 125, 7920-7928.	2.5	8
180	Influence of temperature and resonance-stabilization on the ortho -effect in cymene oxidation. Proceedings of the Combustion Institute, 2015, 35, 543-552.	3.9	7

#	Article	IF	CITATIONS
181	Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere, 2020, 11, 407.	2.3	7
182	Double-resonance measurements of vibrational levels populated by infrared multiphoton excitation of CF3I in a molecular beam. Chemical Physics Letters, 1993, 215, 461-469.	2.6	6
183	Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C C double bonds on the peroxy radical chemistry in alcohol oxidation. Proceedings of the Combustion Institute, 2015, 35, 401-408.	3.9	6
184	Low Temperature Chlorine-Initiated Oxidation of Small-Chain Methyl Esters: Quantification of Chain-Terminating HO ₂ -Elimination Channels. Journal of Physical Chemistry A, 2016, 120, 1677-1690.	2.5	6
185	Valence Photoionization and Autoionization of the Formyl Radical. Journal of Physical Chemistry A, 2021, 125, 3874-3884.	2.5	5
186	Laser double resonance measurements of the quenching rates of Br (2P12) with H2O, D2O, HDO, and O2. Chemical Physics Letters, 1991, 182, 39-44.	2.6	4
187	Two-tone frequency modulation spectroscopy from laser light scattered off a hard target. Applied Optics, 1996, 35, 4735.	2.1	4
188	Reaction of chlorine atom with trichlorosilane from 296to473K. Journal of Chemical Physics, 2006, 125, 224308.	3.0	4
189	A general scaling rule for the collision energy dependence of a rotationally inelastic differential cross-section and its application to NO(X) + He. Physical Chemistry Chemical Physics, 2013, 15, 5620.	2.8	4
190	Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine <i>Via</i> a 1,2-Insertion Mechanism. Journal of Physical Chemistry A, 2022, 126, 710-719.	2.5	4
191	Probing of alignment and orientation using electric-dipole-forbidden transitions. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1551.	1.7	3
192	Intermediates just want to react. Nature Chemistry, 2014, 6, 461-462.	13.6	3
193	Study of low temperature chlorine atom initiated oxidation of methyl and ethyl butyrate using synchrotron photoionization TOF-mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 5785-5794.	2.8	3
194	Insertion products in the reaction of carbonyl oxide Criegee intermediates with acids: Chloro(hydroperoxy)methane formation from reaction of CH2OO with HCl and DCl. Molecular Physics, 0, , .	1.7	3
195	Temperature dependence and deuterium kinetic isotope effects in the HCO+NO reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 149-154.	3.9	2
196	Experimental observation of hydrocarbon growth by resonance stabilized radicalâ€radical chain reaction. Angewandte Chemie, 0, , .	2.0	2
197	Prospects and Limitations of Predicting Fuel Ignition Properties from Low-Temperature Speciation Data. Energy & Fuels, 2022, 36, 3229-3238.	5.1	1
198	Tribute to James A. Miller. Journal of Physical Chemistry A, 2007, 111, 3673-3675.	2.5	0

#	Article	IF	CITATIONS
199	Introductory Tribute to Stephen R. Leone. Journal of Physical Chemistry A, 2008, 112, 9167-9168.	2.5	Ο
200	Editorial: Scientific Frontiers in Chemical Kinetics. International Journal of Chemical Kinetics, 2014, 46, 577-577.	1.6	0
201	Quasi-Quantum Treatment of the rotationally inelastic NO-He scattering. Journal of Physics: Conference Series, 2014, 488, 102026.	0.4	0
202	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	3.2	0
203	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	3.2	0
204	Five <i>vs.</i> six membered-ring PAH products from reaction of <i>o</i> -methylphenyl radical and two C ₃ H ₄ isomers. Physical Chemistry Chemical Physics, 2021, 23, 14913-14924.	2.8	0
205	Diode laser probe of I(asterisk) 2P(1/2) - Doppler measurements of velocity distributions. , 1991, , .		0