Daniella Rylander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embedded 3D Printing in Selfâ€Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs. Advanced Science, 2022, 9, .	5.6	21
2	Functional Assessment of Direct Reprogrammed Neurons In Vitro and In Vivo. Methods in Molecular Biology, 2021, 2352, 183-199.	0.4	0
3	Grafts Derived from an α-Synuclein Triplication Patient Mediate Functional Recovery but Develop Disease-Associated Pathology in the 6-OHDA Model of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 515-528.	1.5	3
4	Editorial: Regeneration and Brain Repair. Frontiers in Cellular Neuroscience, 2021, 15, 687992.	1.8	1
5	Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nature Communications, 2021, 12, 7302.	5.8	39
6	Reprogramming Human Adult Fibroblasts into GABAergic Interneurons. Cells, 2021, 10, 3450.	1.8	7
7	Direct Conversion of Human Stem Cell-Derived Glial Progenitor Cells into GABAergic Interneurons. Cells, 2020, 9, 2451.	1.8	12
8	Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons. Stem Cell Reports, 2020, 15, 869-882.	2.3	18
9	Direct reprogramming into interneurons: potential for brain repair. Cellular and Molecular Life Sciences, 2019, 76, 3953-3967.	2.4	23
10	Dual modulation of neuronâ€specific microRNAs and the REST complex promotes functional maturation of human adult induced neurons. FEBS Letters, 2019, 593, 3370-3380.	1.3	18
11	In Vivo Direct Reprogramming of Resident Glial Cells into Interneurons by Intracerebral Injection of Viral Vectors. Journal of Visualized Experiments, 2019, , .	0.2	5
12	Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiology of Disease, 2018, 109, 148-162.	2.1	36
13	Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Reports, 2018, 24, 1397-1406.	2.9	66
14	Direct Reprogramming of Resident NG2 Glia into Neurons with Properties of Fast-Spiking Parvalbumin-Containing Interneurons. Stem Cell Reports, 2017, 9, 742-751.	2.3	98
15	Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell, 2017, 21, 791-805.e9.	5.2	35
16	REST suppression mediates neural conversion of adult human fibroblasts via microRNAâ€dependent and â€independent pathways. EMBO Molecular Medicine, 2017, 9, 1117-1131.	3.3	87
17	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	5.2	215
18	Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link?. Frontiers in Cellular Neuroscience, 2016, 10, 16.	1.8	9

DANIELLA RYLANDER

#	Article	IF	CITATIONS
19	InÂVivo Reprogramming of Striatal NG2 Glia into Functional Neurons that Integrate into Local Host Circuitry. Cell Reports, 2015, 12, 474-481.	2.9	173
20	Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors. Cell Reports, 2014, 9, 1673-1680.	2.9	36
21	Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain. Scientific Reports, 2014, 4, 6330.	1.6	42
22	Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4375-84.	3.3	26
23	Modulating mGluR5 and 5-HT1A/1B receptors to treat I-DOPA-induced dyskinesia: Effects of combined treatment and possible mechanisms of action. Experimental Neurology, 2013, 250, 116-124.	2.0	44
24	Restoration of synaptic plasticity in the host striatum. NeuroReport, 2013, 24, 1016-1018.	0.6	1
25	The serotonin system: a potential target for anti-dyskinetic treatments and biomarker discovery. Parkinsonism and Related Disorders, 2012, 18, S126-S128.	1.1	15
26	Putaminal Upregulation of FosBſl"FosB-Like Immunoreactivity in Parkinson's Disease Patients with Dyskinesia. Journal of Parkinson's Disease, 2011, 1, 347-357.	1.5	34
27	A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiology of Disease, 2010, 39, 352-361.	2.1	142
28	Maladaptive plasticity of serotonin axon terminals in levodopaâ€ i nduced dyskinesia. Annals of Neurology, 2010, 68, 619-628.	2.8	221
29	Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias. Experimental Neurology, 2010, 225, 408-415.	2.0	22
30	Pharmacological Modulation of Glutamate Transmission in a Rat Model of I-DOPA-Induced Dyskinesia: Effects on Motor Behavior and Striatal Nuclear Signaling. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 227-235.	1.3	160
31	Antagonizing L-type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Biological Psychiatry, 2009, 65, 518-526.	0.7	78
32	Plastic effects of L-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia. Parkinsonism and Related Disorders, 2009, 15, S59-S63.	1.1	43
33	The "motor complication syndrome―in rats with 6-OHDA lesions treated chronically with l-DOPA: Relation to dose and route of administration. Behavioural Brain Research, 2007, 177, 150-1 <u>5</u> 9.	1.2	98