
Ricardo Silvestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831275/publications.pdf Version: 2024-02-01

PICARDO SUVESTRE

#	Article	IF	CITATIONS
1	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	16.2	584
2	Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Reports, 2016, 17, 2562-2571.	6.4	467
3	Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites. Cell, 2005, 121, 25-36.	28.9	432
4	Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Frontiers in Immunology, 2021, 12, 613422.	4.8	228
5	Regulation of immunity during visceral Leishmania infection. Parasites and Vectors, 2016, 9, 118.	2.5	188
6	High Histone Deacetylase 7 (HDAC7) Expression Is Significantly Associated with Adenocarcinomas of the Pancreas. Annals of Surgical Oncology, 2008, 15, 2318-2328.	1.5	115
7	Profiling of RNA Degradation for Estimation of Post Morterm Interval. PLoS ONE, 2013, 8, e56507.	2.5	111
8	SIR2-Deficient <i>Leishmania infantum</i> Induces a Defined IFN-γ/IL-10 Pattern That Correlates with Protection. Journal of Immunology, 2007, 179, 3161-3170.	0.8	102
9	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
10	T cell apoptosis characterizes severe Covid-19 disease. Cell Death and Differentiation, 2022, 29, 1486-1499.	11.2	90
11	Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence. PLoS Neglected Tropical Diseases, 2012, 6, e1469.	3.0	88
12	Impairment of T Cell Function in Parasitic Infections. PLoS Neglected Tropical Diseases, 2014, 8, e2567.	3.0	80
13	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	12.8	68
14	NF-κB pathway controls mitochondrial dynamics. Cell Death and Differentiation, 2016, 23, 89-98.	11.2	65
15	DRAM Triggers Lysosomal Membrane Permeabilization and Cell Death in CD4+ T Cells Infected with HIV. PLoS Pathogens, 2013, 9, e1003328.	4.7	59
16	Evaluation of Bronchoalveolar Lavage Fluid Cytokines as Biomarkers for Invasive Pulmonary Aspergillosis in At-Risk Patients. Frontiers in Microbiology, 2017, 8, 2362.	3.5	54
17	Exploring NAD+ metabolism in host–pathogen interactions. Cellular and Molecular Life Sciences, 2016, 73, 1225-1236.	5.4	53
18	In Vitro Antileishmanial Activity of Nicotinamide. Antimicrobial Agents and Chemotherapy, 2005, 49, 808-812.	3.2	52

#	Article	IF	CITATIONS
19	Live attenuated Leishmania vaccines: a potential strategic alternative. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 123-126.	2.3	51
20	Differential roles of PI3-Kinase, MAPKs and NF-κB on the manipulation of dendritic cell Th1/Th2 cytokine/chemokine polarizing profile. Molecular Immunology, 2009, 46, 2481-2492.	2.2	49
21	Activation of Phosphatidylinositol 3-Kinase/Akt and Impairment of Nuclear Factor-κB. American Journal of Pathology, 2010, 177, 2898-2911.	3.8	48
22	A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Archives of Toxicology, 2015, 89, 2305-2323.	4.2	48
23	The <i>Leishmania</i> nicotinamidase is essential for NAD ⁺ production and parasite proliferation. Molecular Microbiology, 2011, 82, 21-38.	2.5	47
24	The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferonâ€ <i>l³</i> . Immunology, 2015, 145, 498-507.	4.4	45
25	Exoproteome dynamics in Leishmania infantum. Journal of Proteomics, 2013, 84, 106-118.	2.4	44
26	Immune Response Regulation byLeishmaniaSecreted and Nonsecreted Antigens. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-10.	3.0	43
27	Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in Leishmania infantum-Infected Macaques. PLoS Pathogens, 2014, 10, e1004096.	4.7	40
28	Application of an Improved Enzyme-Linked Immunosorbent Assay Method for Serological Diagnosis of Canine Leishmaniasis. Journal of Clinical Microbiology, 2010, 48, 1866-1874.	3.9	38
29	<i>Leishmania</i> -Infected MHC Class Ilhigh Dendritic Cells Polarize CD4+ T Cells toward a Nonprotective T-bet+ IFN-Î ³ + IL-10+ Phenotype. Journal of Immunology, 2013, 191, 262-273.	0.8	37
30	IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. Journal of Allergy and Clinical Immunology, 2017, 140, 867-870.e9.	2.9	37
31	Prevalence of antibodies to Leishmania infantum and Toxoplasma gondii in horses from the north of Portugal. Parasites and Vectors, 2013, 6, 178.	2.5	36
32	Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: <i>in vitro</i> and <i>in vivo</i> studies. Nanomedicine, 2012, 7, 1839-1849.	3.3	35
33	Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005287.	4.7	33
34	The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Reports, 2020, 30, 4052-4064.e7.	6.4	32
35	Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Experimental Biology and Medicine, 2012, 237, 1155-1162.	2.4	29
36	The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. Journal of Clinical Investigation, 2018, 128, 1627-1640.	8.2	29

#	Article	IF	CITATIONS
37	The impact of distinct culture media in <i>Leishmania infantum</i> biology and infectivity. Parasitology, 2014, 141, 192-205.	1.5	28
38	AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?. Current Drug Targets, 2016, 17, 942-953.	2.1	28
39	Promising blood-derived biomarkers for estimation of the postmortem interval. Toxicology Research, 2015, 4, 1443-1452.	2.1	26
40	More than just exosomes: distinct <i>Leishmania infantum</i> extracellular products potentiate the establishment of infection. Journal of Extracellular Vesicles, 2018, 7, 1541708.	12.2	25
41	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008125.	3.0	25
42	IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cellular Oncology (Dordrecht), 2020, 43, 643-654.	4.4	25
43	A Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin. Immunology, 2008, 123, 555-565.	4.4	24
44	Interleukin-1β genotype and circulating levels in cancer patients: Metastatic status and pain perception. Clinical Biochemistry, 2014, 47, 1209-1213.	1.9	24
45	Myeloid Sirtuin 2 Expression Does Not Impact Long-Term Mycobacterium tuberculosis Control. PLoS ONE, 2015, 10, e0131904.	2.5	24
46	The influence of surface modified poly(<scp>l</scp> -lactic acid) films on the differentiation of human monocytes into macrophages. Biomaterials Science, 2017, 5, 551-560.	5.4	24
47	Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1021-e1030.	3.3	23
48	The impact of IL-10 dynamic modulation on host immune response against visceral leishmaniasis. Cytokine, 2018, 112, 16-20.	3.2	23
49	Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cellular Microbiology, 2012, 14, 325-333.	2.1	22
50	The contribution of Tollâ€like receptor 2 to the innate recognition of a <i>Leishmania infantum</i> silent information regulator 2 protein. Immunology, 2009, 128, 484-499.	4.4	21
51	L-Threonine Supplementation During Colitis Onset Delays Disease Recovery. Frontiers in Physiology, 2018, 9, 1247.	2.8	20
52	Serological evaluation of experimentally infected dogs by LicTXNPx–ELISA and amastigote-flow cytometry. Veterinary Parasitology, 2008, 158, 23-30.	1.8	19
53	Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies. Immunology, 2006, 119, 529-540.	4.4	18
54	Seroepidemiological survey of Leishmania infantum infection in dogs from northeastern Portugal. Acta Tropica, 2011, 120, 82-87.	2.0	18

#	Article	IF	CITATIONS
55	Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.	3.9	18
56	Development of a Fluorescent Based Immunosensor for the Serodiagnosis of Canine Leishmaniasis Combining Immunomagnetic Separation and Flow Cytometry. PLoS Neglected Tropical Diseases, 2013, 7, e2371.	3.0	16
57	Enhanced Glycolysis Is Required for Antileishmanial Functions of Neutrophils Upon Infection With Leishmania donovani. Frontiers in Immunology, 2021, 12, 632512.	4.8	16
58	Characterization of <i>Leishmania infantum</i> thiolâ€dependent reductase 1 and evaluation of its potential to induce immune protection. Parasite Immunology, 2012, 34, 345-350.	1.5	14
59	Interleukin-27 Early Impacts Leishmania infantum Infection in Mice and Correlates with Active Visceral Disease in Humans. Frontiers in Immunology, 2016, 7, 478.	4.8	14
60	Immune-metabolic interactions between Leishmania and macrophage host. Current Opinion in Microbiology, 2021, 63, 231-237.	5.1	14
61	Dysregulation of glycerophospholipid metabolism during Behçet's disease contributes to a pro-inflammatory phenotype of circulating monocytes. Journal of Translational Autoimmunity, 2020, 3, 100056.	4.0	13
62	CD4 T Follicular Helper Cells and HIV Infection: Friends or Enemies?. Frontiers in Immunology, 2017, 8, 135.	4.8	12
63	Evaluation of Leishmania Species Reactivity in Human Serologic Diagnosis of Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 202-208.	1.4	12
64	Vasculogenesis and Diabetic Erectile Dysfunction: How Relevant Is Glycemic Control?. Journal of Cellular Biochemistry, 2017, 118, 82-91.	2.6	10
65	Infection of hematopoietic stem cells by Leishmania infantum increases erythropoiesis and alters the phenotypic and functional profiles of progeny. Cellular Immunology, 2018, 326, 77-85.	3.0	10
66	Development and Characterization of an Avirulent <i>Leishmania major</i> Strain. Journal of Immunology, 2020, 204, 2734-2753.	0.8	10
67	Interdependencies between Tollâ€like receptors in <i>Leishmania</i> infection. Immunology, 2021, 164, 173-189.	4.4	10
68	PTX3 Polymorphisms Influence Cytomegalovirus Reactivation After Stem-Cell Transplantation. Frontiers in Immunology, 2019, 10, 88.	4.8	9
69	AMPK in Pathogens. Exs, 2016, 107, 287-323.	1.4	8
70	Cytokines in the immunity and immunopathogenesis in leishmaniases. Cytokine, 2021, 145, 155320.	3.2	8
71	Early IL-10 promotes vasculature-associated CD4+ T cells unable to control Mycobacterium tuberculosis infection. JCl Insight, 2021, 6, .	5.0	8
72	IL-2 immunotherapy in chronically SIV-infected Rhesus Macaques. Virology Journal, 2012, 9, 220.	3.4	7

#	Article	IF	CITATIONS
73	Metabolic Crosstalk Between Host and Parasitic Pathogens. Experientia Supplementum (2012), 2018, 109, 421-458.	0.9	7
74	Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine, 2021, 147, 155267.	3.2	7
75	Spatial distribution of canine Leishmania infantum infection in a municipality with endemic human leishmaniasis in Eastern Bahia, Brazil. Brazilian Journal of Veterinary Parasitology, 2021, 30, e022620.	0.7	7
76	Methods for the analysis of transcriptome dynamics. Toxicology Research, 2019, 8, 597-612.	2.1	6
77	Non-human primates and Leishmania immunity. Cytokine: X, 2020, 2, 100038.	1.4	5
78	Recognition of Leishmania Parasites by Innate Immunity. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 106-127.	0.5	5
79	Alterations on Cellular Redox States upon Infection and Implications for Host Cell Homeostasis. Experientia Supplementum (2012), 2018, 109, 197-220.	0.9	4
80	Evaluating the Role of Host AMPK in Leishmania Burden. Methods in Molecular Biology, 2018, 1732, 551-563.	0.9	3
81	Mathematical Modelling Using Predictive Biomarkers for the Outcome of Canine Leishmaniasis upon Chemotherapy. Microorganisms, 2020, 8, 745.	3.6	2
82	Mimicking Behçet's disease: GM SF gain of function mutation in a family suffering from a Behçet's diseaseâ€like disorder marked by extreme pathergy. Clinical and Experimental Immunology, 2021, 204, 189-198.	2.6	2
83	Nutritional adjuvants with antioxidant properties in the treatment of canine leishmaniasis. Veterinary Parasitology, 2021, 298, 109526.	1.8	2
84	Leishmania infantum Infection of Primary Human Myeloid Cells. Microorganisms, 2022, 10, 1243.	3.6	2
85	Development of a simple and rapid spectrophotometric method for the quantification of carboxyhemoglobin. Toxicology Letters, 2013, 221, S186.	0.8	0
86	492 Linking endothelial progenitor cells and diabetic erectile dysfunction. European Urology Supplements, 2014, 13, e492.	0.1	0
87	Response to the comment on "Promising blood-derived biomarkers for estimation of the <i>postmortem</i> interval― Toxicology Research, 2016, 5, 716-718.	2.1	0
88	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
89	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
90	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0

#	Article	IF	CITATIONS
91	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
92	The Role of Biobanks in the Fight against COVID-19 Pandemic: The Portuguese Response. Acta Medica Portuguesa, 2021, 35, .	0.4	0