Shiyuan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831268/publications.pdf

Version: 2024-02-01

		687363	642732
23	590	13	23
papers	citations	h-index	g-index
23	23	23	649
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale, 2018, 10, 17435-17455.	5.6	82
2	In Situ Atomicâ€Scale Observation of Reversible Potassium Storage in Sb ₂ S ₃ @Carbon Nanowire Anodes. Advanced Functional Materials, 2020, 30, 2005417.	14.9	75
3	Long-Life Aqueous Zn–I ₂ Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Letters, 2022, 22, 2538-2546.	9.1	65
4	A "Biconcave-Alleviated―Strategy to Construct <i>Aspergillus niger</i> -Derived Carbon/MoS ₂ for Ultrastable Sodium Ion Storage. ACS Nano, 2021, 15, 13814-13825.	14.6	49
5	Strong lithium polysulfides chemical trapping of TiC-TiO2/S composite for long-cycle lithium-sulfur batteries. Electrochimica Acta, 2019, 298, 43-51.	5.2	46
6	Biomimetic micro cell cathode for high performance lithium–sulfur batteries. Nano Energy, 2020, 72, 104680.	16.0	42
7	Efficient diffusion of superdense lithium <i>via</i> atomic channels for dendrite-free lithium–metal batteries. Energy and Environmental Science, 2022, 15, 196-205.	30.8	27
8	A "boxes in fibers―strategy to construct a necklace-like conductive network for high-rate and high-loading lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 11327-11336.	10.3	24
9	Stabilizing Li–O ₂ Batteries with Multifunctional Fluorinated Graphene. Nano Letters, 2022, 22, 4985-4992.	9.1	24
10	Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. Journal of Materials Chemistry A, 2022, 10, 16087-16094.	10.3	24
11	Structural design and material preparation of carbon-based electrodes for high-performance lithium storage systems. Carbon, 2019, 144, 127-146.	10.3	22
12	CeO -supported monodispersed MoO3 clusters for high-efficiency electrochemical nitrogen reduction under ambient condition. Journal of Energy Chemistry, 2021, 56, 186-192.	12.9	20
13	Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li–O ₂ Battery in Open O ₂ Environment. Nano Letters, 2022, 22, 815-821.	9.1	16
14	Reasonably Introduced ZnIn ₂ S ₄ @C to Mediate Polysulfide Redox for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 14169-14180.	8.0	13
15	Hierarchical desert-waves-like LiNi0.5Mn1.5O4 as advanced cathodes with superior rate capability and cycling stability. Materials Today Energy, 2019, 14, 100363.	4.7	11
16	Hierarchical LiNi0.5Mn1.5O4 micro-rods with enhanced rate performance for lithium-ion batteries. Journal of Materials Science, 2018, 53, 9710-9720.	3.7	10
17	Facile synthesis of Co _{3â°'x} Mn _x O ₄ /C nanocages as an efficient sulfur host for lithium–sulfur batteries with enhanced rate performance. Dalton Transactions, 2020, 49, 8591-8600.	3 . 3	9
18	Hierarchical Fusiform Microrods Constructed by Parallelly Arranged Nanoplatelets of LiCoO ₂ Material with Ultrahigh Rate Performance. ACS Applied Materials & Interfaces, 2020, 12, 17376-17384.	8.0	9

SHIYUAN ZHOU

#	Article	IF	CITATION
19	Bricklike Ca ₉ Co ₁₂ O ₂₈ as an Active/Inactive Composite for Lithium-Ion Batteries with Enhanced Rate Performances. ACS Omega, 2019, 4, 6452-6458.	3.5	7
20	Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope. Nano Letters, 2020, 20, 2279-2287.	9.1	5
21	Copper Substitution in P2-Type Sodium Layered Oxide To Mitigate Phase Transition and Enhance Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29813-29821.	8.0	4
22	Hierarchical LiNi0.5Mn1.5O4 microspheres assembled with nanorice and their enhanced rates performance. Materials Letters, 2019, 236, 653-656.	2.6	3
23	Cation-Gated Ion Transport at Nanometer Scale for Tunable Power Generation. Journal of Physical Chemistry Letters, 2022, 13, 2625-2631.	4.6	3