Mohamed Ragaa Mohamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6830813/publications.pdf

Version: 2024-02-01

52 papers 1,340 citations

393982 19 h-index 35 g-index

53 all docs

53 docs citations

53 times ranked 2042 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal stem cells seeded onto nanofiber scaffold for myocardial regeneration. Biotechnic and Histochemistry, 2022, 97, 322-333.	0.7	7
2	The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson's disease in rats. European Journal of Pharmacology, 2022, 914, 174573.	1.7	10
3	Role of bone marrow-derived mesenchymal stem cells in alleviating pulmonary epithelium damage and extracellular matrix remodeling in a rat model of lung fibrosis induced by amiodarone. Biotechnic and Histochemistry, 2021, 96, 418-430.	0.7	5
4	Camellia sinesis leaves extract ameliorates high fat diet-induced nonalcoholic steatohepatitis in rats: analysis of potential mechanisms. Journal of Pharmaceutical Investigation, 2021, 51, 183-197.	2.7	3
5	Expression and prognostic relevance of long noncoding RNAs CRNDE and AOX2P in adult acute myeloid leukemia. International Journal of Laboratory Hematology, 2021, 43, 732-742.	0.7	7
6	Therapeutic potential of targetedâ€gold nanospheres on collagenâ€induced arthritis in rats. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1346-1357.	0.9	5
7	Indole glucosinolates exhibit anti-inflammatory effects on Ehrlich ascites carcinoma cells through modulation of inflammatory markers and miRNAs. Molecular Biology Reports, 2021, 48, 6845-6855.	1.0	16
8	Nanomaterial-induced mesenchymal stem cell differentiation into osteoblast for counteracting bone resorption in the osteoporotic rats. Tissue and Cell, 2021, 73, 101645.	1.0	1
9	Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology, 2020, 72, 1-22.	0.7	20
10	Osteoblast-Based Therapy—A New Approach for Bone Repair in Osteoporosis: Pre-Clinical Setting. Tissue Engineering and Regenerative Medicine, 2020, 17, 363-373.	1.6	14
11	Association study of polymorphisms in ABCA7, clusterin, and MS4A6A genes with Alzheimer's disease in the Egyptian population. Turkish Journal of Biochemistry, 2020, 45, 757-765.	0.3	0
12	Influence of <i>IL-6</i> , <i>IL-10</i> , <i>IFN-\hat{I}^3</i> and <i>TNF-\hat{I}^\pm</i> genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers, 2019, 24, 43-55.	0.9	53
13	Identification of novel small molecule inhibitors against the NS3/4A protease of hepatitis C virus genotype 4a. Current Pharmaceutical Design, 2019, 24, 4484-4491.	0.9	2
14	Role of CD71 in acute leukemia– An immunophenotypic marker for erythroid lineage or proliferation?. Indian Journal of Pathology and Microbiology, 2019, 62, 418.	0.1	4
15	Development of an efficient in vivo cell-based assay system for monitoring hepatitis C virus genotype 4a NS3/4A protease activity. Indian Journal of Pathology and Microbiology, 2019, 62, 391.	0.1	O
16	Time-course expression profile and diagnostic potential of a miRNA panel in exosomes and total serum in acute liver injury. International Journal of Biochemistry and Cell Biology, 2018, 100, 11-21.	1.2	20
17	Extracellular miR-145, miR-223 and miR-326 expression signature allow for differential diagnosis of immune-mediated neuroinflammatory diseases. Journal of the Neurological Sciences, 2017, 383, 188-198.	0.3	36
18	Tissue CA125 and HE4 Gene Expression Levels Offer Superior Accuracy in Discriminating Benign from Malignant Pelvic Masses. Asian Pacific Journal of Cancer Prevention, 2016, 17, 323-333.	0.5	14

#	Article	IF	Citations
19	The anti-apoptotic and anti-inflammatory properties of puerarin attenuate 3-nitropropionic-acid induced neurotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 2014, 92, 252-258.	0.7	43
20	Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plantarum, 2014, 58, 265-273.	1.9	81
21	Puerarin Ameliorates 3-Nitropropionic Acid-Induced Neurotoxicity in Rats: Possible Neuromodulation and Antioxidant Mechanisms. Neurochemical Research, 2014, 39, 321-332.	1.6	16
22	Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression. Environmental Toxicology and Pharmacology, 2014, 38, 531-541.	2.0	33
23	Assessment of the Prognostic Value of Methylation Status and Expression Levels of FHIT, GSTP1 and p16 in Non-Small Cell Lung Cancer in Egyptian Patients. Asian Pacific Journal of Cancer Prevention, 2014, 15, 4281-4287.	0.5	26
24	Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro-Oncology, 2013, 15, 904-920.	0.6	44
25	The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochemistry International, 2011, 59, 770-778.	1.9	59
26	Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells. Virology, 2010, 401, 266-279.	1.1	26
27	Influence of Ionizing Radiation on Echis pyramidium Snake Venom: Biochemical and Immunological Aspects. The Egyptian Journal of Hospital Medicine, 2010, 40, 314-334.	0.0	6
28	The Addition of Tumor Necrosis Factor plus Beta Interferon Induces a Novel Synergistic Antiviral State against Poxviruses in Primary Human Fibroblasts. Journal of Virology, 2009, 83, 498-511.	1.5	77
29	NFκB inhibitors: Strategies from poxviruses. Cell Cycle, 2009, 8, 3125-3132.	1.3	87
30	Co-Regulation of NF-κB and Inflammasome-Mediated Inflammatory Responses by Myxoma Virus Pyrin Domain-Containing Protein M013. PLoS Pathogens, 2009, 5, e1000635.	2.1	60
31	Poxvirus Proteomics and Virus-Host Protein Interactions. Microbiology and Molecular Biology Reviews, 2009, 73, 730-749.	2.9	63
32	Proteomic screening of variola virus reveals a unique NF- \hat{l}° B inhibitor that is highly conserved among pathogenic orthopoxviruses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9045-9050.	3.3	59
33	Cowpox Virus Expresses a Novel Ankyrin Repeat NF-ÎB Inhibitor That Controls Inflammatory Cell Influx into Virus-Infected Tissues and Is Critical for Virus Pathogenesis. Journal of Virology, 2009, 83, 9223-9236.	1.5	39
34	Cytokine determinants of viral tropism. Nature Reviews Immunology, 2009, 9, 645-655.	10.6	121
35	Involvement of serotoninergic 5-HT1A/2A, alpha-adrenergic and dopaminergic D1 receptors in St. John's wort-induced prepulse inhibition deficit: A possible role of hyperforin. Behavioural Brain Research, 2009, 199, 334-339.	1.2	10
36	Proapoptotic and prepulse inhibition (PPI) disrupting effects of Hypericum perforatum in rats. Journal of Ethnopharmacology, 2009, 122, 561-566.	2.0	7

#	Article	IF	CITATIONS
37	Copper (II)-Surfactant Complex and Its Nano Analog as Potential Antitumor Agents. Journal of Dispersion Science and Technology, 2009, 30, 1303-1309.	1.3	5
38	Cloning and characterization of a cDNA fragment encoding a Schistosoma mansoni actin-binding protein (Smfilamin). Parasitology Research, 2008, 102, 1035-1042.	0.6	5
39	Determinants of vaccinia virus early gene transcription termination. Virology, 2008, 376, 211-224.	1.1	7
40	Vaccinia virus early gene transcription termination factors VTF and Rap94 interact with the U9 termination motif in the nascent RNA in a transcription ternary complex. Virology, 2008, 376, 225-235.	1.1	10
41	Tumor necrosis factor and interferon: cytokines in harmony. Current Opinion in Microbiology, 2008, 11, 378-383.	2.3	52
42	RIG-I Mediates the Co-Induction of Tumor Necrosis Factor and Type I Interferon Elicited by Myxoma Virus in Primary Human Macrophages. PLoS Pathogens, 2008, 4, e1000099.	2.1	81
43	Effect of UTP sugar and base modifications on vaccinia virus early gene transcription. Virology, 2006, 349, 359-370.	1.1	2
44	Transient and Inducible Expression of Vaccinia/T7 Recombinant Viruses., 2004, 269, 41-50.		7
45	UUUUUNU oligonucleotide inhibition of RNA synthesis in vaccinia virus cores. Virology, 2004, 324, 493-500.	1.1	1
46	Effect of selected mutations in the C-terminal region of the vaccinia virus nucleoside triphosphate phosphohydrolase I on binding to the H4L subunit of the viral RNA polymerase and early gene transcription termination in vitro. Virology, 2003, 310, 109-117.	1.1	10
47	UUUUUNU Oligonucleotide Stimulation of Vaccinia Virus Early Gene Transcription Termination, in Trans. Journal of Biological Chemistry, 2003, 278, 11794-11801.	1.6	9
48	UUUUUNU Stimulation of Vaccinia Virus Early Gene Transcription Termination. Journal of Biological Chemistry, 2003, 278, 39534-39541.	1.6	6
49	Antibodies Directed against an Epitope in the N-Terminal Region of the H4L Subunit of the Vaccinia Virus RNA Polymerase Inhibit Both Transcription Initiation and Transcription Termination, in Vitro. Virology, 2002, 299, 142-153.	1.1	10
50	Interaction between the J3R Subunit of Vaccinia Virus Poly(A) Polymerase and the H4L Subunit of the Viral RNA Polymerase. Virology, 2001, 280, 143-152.	1.1	11
51	The Viral RNA Polymerase H4L Subunit Is Required for Vaccinia Virus Early Gene Transcription Termination. Journal of Biological Chemistry, 2001, 276, 20758-20765.	1.6	14
52	Interaction between Nucleoside Triphosphate Phosphohydrolase I and the H4L Subunit of the Viral RNA Polymerase Is Required for Vaccinia Virus Early Gene Transcript Release. Journal of Biological Chemistry, 2000, 275, 25798-25804.	1.6	32