Ewa Gurgul-Convey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6830793/publications.pdf

Version: 2024-02-01

26 papers 574 citations

687220 13 h-index 23 g-index

26 all docs

26 docs citations

times ranked

26

788 citing authors

#	Article	IF	CITATIONS
1	To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. International Journal of Molecular Sciences, 2022, 23, 1638.	1.8	5
2	Proinflammatory cytokines induce rapid, NO-independent apoptosis, expression of chemotactic mediators and interleukin-32 secretion in human pluripotent stem cell-derived beta cells. Diabetologia, 2022, 65, 829-843.	2.9	9
3	MCPIP1 is a novel link between diabetogenic conditions and impaired insulin secretory capacity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166199.	1.8	4
4	Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity. International Journal of Molecular Sciences, 2021, 22, 10893.	1.8	3
5	Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells, 2020, 9, 1835.	1.8	11
6	Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Archives of Medical Science, 2020, , .	0.4	1
7	MCPIP1 regulates the sensitivity of pancreatic beta-cells to cytokine toxicity. Cell Death and Disease, 2019, 10, 29.	2.7	12
8	Overexpression of sphingosine-1-phosphate lyase protects insulin-secreting cells against cytokine toxicity. Journal of Biological Chemistry, 2017, 292, 20292-20304.	1.6	24
9	Improved antioxidative defence protects insulin-producing cells against homocysteine toxicity. Chemico-Biological Interactions, 2016, 256, 37-46.	1.7	5
10	Sensitivity profile of the human EndoC- \hat{l}^2 H1 beta cell line to proinflammatory cytokines. Diabetologia, 2016, 59, 2125-2133.	2.9	54
11	Unveiling a common mechanism of apoptosis in \hat{l}^2 -cells and neurons in Friedreich's ataxia. Human Molecular Genetics, 2015, 24, 2274-2286.	1.4	58
12	Physiological characterization of the human EndoC- \hat{l}^2 H1 \hat{l}^2 -cell line. Biochemical and Biophysical Research Communications, 2015, 464, 13-19.	1.0	38
13	Is Nitric Oxide Really the Primary Mediator of Pancreatic β-Cell Death in Type 1 Diabetes?. Journal of Biological Chemistry, 2015, 290, 10570.	1.6	2
14	IL- $1\hat{l}^2$ hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome <i>i</i> >c/ <i>i</i> >oxidase inhibition by nitric oxide. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E648-E657.	1.8	12
15	Limited GADD45Î \pm expression and function in IL-1Î 2 toxicity towards insulin-producing cells. Acta Biochimica Polonica, 2013, 60, 595-602.	0.3	1
16	Mechanism of Prostacyclin-Induced Potentiation of Glucose-Induced Insulin Secretion. Endocrinology, 2012, 153, 2612-2622.	1.4	18
17	Effects of the novel mitochondrial protein mimitin in insulin-secreting cells. Biochemical Journal, 2012, 445, 349-359.	1.7	11
18	Is there a role for neuronal nitric oxide synthase (nNOS) in cytokine toxicity to pancreatic beta cells?. Nitric Oxide - Biology and Chemistry, 2012, 27, 235-241.	1.2	11

#	Article	IF	CITATION
19	Differential effects of proinflammatory cytokines on cell death and ER stress in insulin-secreting INS1E cells and the involvement of nitric oxide. Cytokine, 2011, 55, 195-201.	1.4	40
20	Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1827-1835.	1.9	28
21	Cytokine toxicity in insulin-producing cells is mediated by nitro-oxidative stress-induced hydroxyl radical formation in mitochondria. Journal of Molecular Medicine, 2011, 89, 785-798.	1.7	58
22	Protection against Cytokine Toxicity through Endoplasmic Reticulum and Mitochondrial Stress Prevention by Prostacyclin Synthase Overexpression in Insulin-producing Cells. Journal of Biological Chemistry, 2010, 285, 11121-11128.	1.6	21
23	Protection of insulin-producing cells against toxicity of dexamethasone by catalase overexpression. Free Radical Biology and Medicine, 2009, 47, 1386-1393.	1.3	20
24	Relation Between Triketone Structure, Generation of Reactive Oxygen Species, and Selective Toxicity of the Diabetogenic Agent Alloxan. Antioxidants and Redox Signaling, 2008, 10, 691-700.	2.5	16
25	Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. Journal of Endocrinology, 2008, 197, 139-150.	1.2	67
26	Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free Radical Biology and Medicine, 2006, 41, 825-834.	1.3	45