Seonil Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683067/publications.pdf Version: 2024-02-01

SEONIL KWON

#	Article	IF	CITATIONS
1	A Review of Flexible OLEDs Toward Highly Durable Unusual Displays. IEEE Transactions on Electron Devices, 2017, 64, 1922-1931.	3.0	185
2	Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Scientific Reports, 2017, 7, 6424.	3.3	113
3	Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process. Nano Letters, 2018, 18, 347-356.	9.1	113
4	High Luminance Fiberâ€Based Polymer Lightâ€Emitting Devices by a Dip oating Method. Advanced Electronic Materials, 2015, 1, 1500103.	5.1	94
5	A substrateless, flexible, and water-resistant organic light-emitting diode. Nature Communications, 2020, 11, 6250.	12.8	91
6	Reliable Actual Fabricâ€Based Organic Lightâ€Emitting Diodes: Toward a Wearable Display. Advanced Electronic Materials, 2016, 2, 1600220.	5.1	90
7	Soft fabric-based flexible organic light-emitting diodes. Organic Electronics, 2013, 14, 3007-3013.	2.6	83
8	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	21.0	81
9	Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Advances, 2016, 6, 40835-40843.	3.6	64
10	A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale, 2017, 9, 6370-6379.	5.6	46
11	Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. Npj Flexible Electronics, 2020, 4, .	10.7	41
12	Brightâ€Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Lightâ€Emitting Fibers: Toward Wearable Textile Information Displays. Advanced Functional Materials, 2021, 31, 2009336.	14.9	38
13	Solution-processed bottom-emitting polymer light-emitting diodes on a textile substrate towards a wearable display. Journal of Information Display, 2015, 16, 179-184.	4.0	33
14	Low-Leakage Fiber-Based Field-Effect Transistors with an Al ₂ O ₃ –MgO Nanolaminate as Gate Insulator. ACS Applied Electronic Materials, 2019, 1, 1400-1407.	4.3	21
15	Spectroscopic near-infrared photodetectors enabled by strong light–matter coupling in (6,5) single-walled carbon nanotubes. Journal of Chemical Physics, 2020, 153, 201104.	3.0	9
16	38â€4: Clothingâ€shaped Organic Lightâ€emitting Devices (OLEDs) for Wearable Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 486-488.	0.3	6
17	28.1: OLEDs on Textile Substrates with Planarization and Encapsulation using Multilayers for Wearable Displays. Digest of Technical Papers SID International Symposium, 2014, 45, 364-366.	0.3	5
18	Pâ€148: Polymer Lightâ€Emitting Diodes Using the Dip Coating Method on Flexible Fiber Substrates for Wearable Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 1753-1755.	0.3	2

SEONIL KWON

#	Article	IF	CITATIONS
19	Influence of regioisomerism in bis(terpyridine) based exciplexes with delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 7699-7706.	5.5	1
20	Light-Emitting Devices: High Luminance Fiber-Based Polymer Light-Emitting Devices by a Dip-Coating Method (Adv. Electron. Mater. 9/2015). Advanced Electronic Materials, 2015, 1, n/a-n/a.	5.1	0
21	Pâ€98: Improved Cell Proliferation Effect on the Human Fibroblast by the Irradiation of Aging Processed PLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1624-1626.	0.3	0
22	77â€4: Highâ€Efficiency Flexible Fiberâ€Based Lightâ€Emitting Devices Processed by Phosphorescent Solution. Digest of Technical Papers SID International Symposium, 2020, 51, 1152-1154.	0.3	0