

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6830508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 2009, 377, 35-42.	2.3	598
2	1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11, 1931-1946.	3.7	499
3	Detecting and attributing vegetation changes on China's Loess Plateau. Agricultural and Forest Meteorology, 2017, 247, 260-270.	1.9	226
4	Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environmental Research, 2015, 139, 11-19.	3.7	216
5	Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agricultural and Forest Meteorology, 2012, 154-155, 147-155.	1.9	177
6	Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961–2007. Quaternary International, 2010, 226, 92-100.	0.7	161
7	Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 2014, 336, 35-43.	0.7	141
8	Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China. Agricultural Water Management, 2010, 97, 1133-1138.	2.4	112
9	Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climatic Change, 2011, 105, 223-242.	1.7	98
10	Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Science of the Total Environment, 2017, 586, 827-835.	3.9	96
11	Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Science of the Total Environment, 2021, 773, 145514.	3.9	96
12	Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Science of the Total Environment, 2020, 719, 137315.	3.9	90
13	Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century. Global and Planetary Change, 2012, 82-83, 65-73.	1.6	84
14	Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrology and Earth System Sciences, 2017, 21, 1515-1526.	1.9	81
15	Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102179.	1.4	75
16	Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Science of the Total Environment, 2018, 628-629, 443-452.	3.9	73
17	Separating the impacts of climate change and land surface alteration on runoff reduction in the Jing River catchment of China. Catena, 2016, 147, 80-86.	2.2	72
18	Tritium analysis shows apple trees may be transpiring water several decades old. Hydrological Processes, 2017, 31, 1196-1201.	1.1	72

#	Article	IF	CITATIONS
19	Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma, 2019, 337, 773-781.	2.3	68
20	Evidences for replacing legacy per- and polyfluoroalkyl substances with emerging ones in Fen and Wei River basins in central and western China. Journal of Hazardous Materials, 2019, 377, 78-87.	6.5	62
21	Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 2019, 275, 59-68.	1.9	62
22	Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China. Hydrological Processes, 2014, 28, 1025-1031.	1.1	55
23	Agricultural water demands in Central Asia under 1.5â€ [−] °C and 2.0â€ [−] °C global warming. Agricultural Water Management, 2020, 231, 106020.	2.4	55
24	Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, 2013, 27, 3718-3729.	1.1	52
25	Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986–2010. Environmental Earth Sciences, 2016, 75, 1.	1.3	52
26	How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology, 2020, 583, 124532.	2.3	48
27	Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. Plant Science, 2016, 248, 17-27.	1.7	47
28	Catchment-scale surface water-groundwater connectivity on China's Loess Plateau. Catena, 2017, 152, 268-276.	2.2	47
29	Evolution of potential evapotranspiration in the northern Loess Plateau of China: recent trends and climatic drivers. International Journal of Climatology, 2016, 36, 4019-4028.	1.5	45
30	Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. Frontiers in Plant Science, 2017, 8, 97.	1.7	45
31	Multiple tracers reveal different groundwater recharge mechanisms in deep loess deposits. Geoderma, 2019, 353, 204-212.	2.3	45
32	Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agriculture, Ecosystems and Environment, 2019, 285, 106645.	2.5	40
33	Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustainable Cities and Society, 2020, 52, 101827.	5.1	39
34	Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3― Frontiers in Plant Science, 2016, 7, 503.	1.7	38
35	Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2018, 123, 34-42.	2.8	37
36	Uncertainties in tritium mass balance models for groundwater recharge estimation. Journal of Hydrology, 2019, 571, 150-158.	2.3	37

Zнı Li

#	Article	IF	CITATIONS
37	First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China. Journal of Hazardous Materials, 2021, 404, 124134.	6.5	34
38	Comparison of the effectiveness of four Budyko-based methods in attributing long-term changes in actual evapotranspiration. Scientific Reports, 2018, 8, 12665.	1.6	33
39	Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China. International Journal of Climatology, 2014, 34, 462-471.	1.5	32
40	Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, 2020, 369, 114321.	2.3	32
41	A new framework for multi-site weather generator: a two-stage model combining a parametric method with a distribution-free shuffle procedure. Climate Dynamics, 2014, 43, 657-669.	1.7	31
42	Groundwater and streamflow sources in China's Loess Plateau on catchment scale. Catena, 2019, 181, 104075.	2.2	30
43	How much information can soil solute profiles reveal about groundwater recharge?. Geosciences Journal, 2016, 20, 495-502.	0.6	29
44	The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change, 2017, 149, 14-19.	1.6	29
45	Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environmental Pollution, 2019, 254, 113006.	3.7	29
46	Runoff change controlled by combined effects of multiple environmental factors in a headwater catchment with cold and arid climate in northwest China. Science of the Total Environment, 2021, 756, 143995.	3.9	29
47	Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research, 2021, 200, 111476.	3.7	29
48	Reconstructed Precipitation Tritium Leads to Overestimated Groundwater Recharge. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9858-9867.	1.2	28
49	Assessing and regulating the impacts of climate change on water resources in the Heihe watershed on the Loess Plateau of China. Science China Earth Sciences, 2010, 53, 710-720.	2.3	27
50	Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China. Hydrology and Earth System Sciences, 2017, 21, 5531-5546.	1.9	27
51	Incorporation of potential natural vegetation into revegetation programmes for sustainable land management. Land Degradation and Development, 2018, 29, 3503-3511.	1.8	27
52	Impacts of deep-rooted fruit trees on recharge of deep soil water using stable and radioactive isotopes. Agricultural and Forest Meteorology, 2021, 300, 108325.	1.9	27
53	Spatial and seasonal variability, control factors and health risk of fluoride in natural water in the Loess Plateau of China. Journal of Hazardous Materials, 2022, 434, 128897.	6.5	26
54	Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. Plant Physiology and Biochemistry, 2017, 112, 346-361.	2.8	25

#	Article	IF	CITATIONS
55	Effects of forest cover change on catchment evapotranspiration variation in China. Hydrological Processes, 2020, 34, 2219-2228.	1.1	25
56	Integrating potential natural vegetation and habitat suitability into revegetation programs for sustainable ecosystems under future climate change. Agricultural and Forest Meteorology, 2019, 269-270, 270-284.	1.9	24
57	Spatiotemporal variation in the attribution of streamflow changes in a catchment on China's Loess Plateau. Catena, 2017, 158, 1-8.	2.2	23
58	Evaluating and Extending CLIGEN Precipitation Generation for the Loess Plateau of China ¹ . Journal of the American Water Resources Association, 2009, 45, 378-396.	1.0	22
59	Ectopic Expression in Arabidopsis thaliana of an NB-ARC Encoding Putative Disease Resistance Gene from Wild Chinese Vitis pseudoreticulata Enhances Resistance to Phytopathogenic Fungi and Bacteria. Frontiers in Plant Science, 2015, 6, 1087.	1.7	22
60	Stable isotope tracing of headwater sources in a river on China's Loess Plateau. Hydrological Sciences Journal, 2017, 62, 2150-2159.	1.2	22
61	Nitrate-nitrogen transport in streamwater and groundwater in a loess covered region: Sources, drivers, and spatiotemporal variation. Science of the Total Environment, 2021, 761, 143278.	3.9	22
62	The jasmonate-ZIM domain gene VqIAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 143, 329-339.	2.8	21
63	Recharge mechanism of deep soil water and the response to land use change in the loess deposits. Journal of Hydrology, 2021, 592, 125817.	2.3	21
64	Legacy nitrate in the deep loess deposits after conversion of arable farmland to nonâ€fertilized land uses for degraded land restoration. Land Degradation and Development, 2020, 31, 1355-1365.	1.8	20
65	Response of NDVI of Natural Vegetation to Climate Changes and Drought in China. Land, 2021, 10, 966.	1.2	20
66	Modelling and attributing evapotranspiration changes on China's Loess Plateau with Budyko framework considering vegetation dynamics and climate seasonality. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1217-1230.	1.9	17
67	River damming and drought affect water cycle dynamics in an ephemeral river based on stable isotopes: The Dagu River of North China. Science of the Total Environment, 2021, 758, 143682.	3.9	17
68	Variability of extreme summer precipitation over Circum-Bohai-Sea region during 1961–2008. Theoretical and Applied Climatology, 2011, 104, 501-509.	1.3	16
69	Links between the spatial structure of weather generator and hydrological modeling. Theoretical and Applied Climatology, 2017, 128, 103-111.	1.3	16
70	Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, 2021, 603, 126895.	2.3	16
71	Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone. Agricultural Water Management, 2021, 245, 106637.	2.4	15
72	Role of grapevine <i>SEPALLATA</i> â€related <scp>MADS</scp> â€box gene <i>VvMADS39</i> in flower and ovule development. Plant Journal, 2022, 111, 1565-1579.	2.8	15

#	Article	IF	CITATIONS
73	Potential land use adjustment for future climate change adaptation in revegetated regions. Science of the Total Environment, 2018, 639, 476-484.	3.9	14
74	Conversion of degraded farmlands to orchards decreases groundwater recharge rates and nitrate gains in the thick loess deposits. Agriculture, Ecosystems and Environment, 2021, 314, 107410.	2.5	14
75	Factors dominating the horizontal and vertical variability of soil water vary with climate and plant type in loess deposits. Science of the Total Environment, 2022, 811, 152172.	3.9	14
76	The land use changes and its relationship with topographic factors in the Jing river catchment on the Loess Plateau of China. SpringerPlus, 2013, 2, S3.	1.2	13
77	Changes in rainfall erosivity from combined effects of multiple factors in China's Loess Plateau. Catena, 2022, 216, 106373.	2.2	13
78	Hydrochemical Characteristics, Controlling Factors, and Solute Sources of Streamflow and Groundwater in the Hei River Catchment, China. Water (Switzerland), 2019, 11, 2293.	1.2	12
79	Recycled moisture in an enclosed basin, Guanzhong Basin of Northern China, in the summer: Contribution to precipitation based on a stable isotope approach. Environmental Science and Pollution Research, 2020, 27, 27926-27936.	2.7	12
80	Dicyandiamide efficacy of inhibiting nitrification and carbon dioxide emission from calcareous soil depends on temperature and moisture contents. Archives of Agronomy and Soil Science, 2022, 68, 1413-1429.	1.3	11
81	Current Progress and Future Prospects for the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Genome Editing Technology in Fruit Tree Breeding. Critical Reviews in Plant Sciences, 2018, 37, 233-258.	2.7	10
82	Past and future changes in regional crop water requirements in Northwest China. Theoretical and Applied Climatology, 2019, 137, 2203-2215.	1.3	10
83	A novel optimal data set approach for erosionâ€impacted soil quality assessments—A caseâ€study of an agricultural catchment in the Chernozem region of Northeast China. Land Degradation and Development, 2022, 33, 1062-1075.	1.8	10
84	Stochastic generation of daily precipitation considering diverse model complexity and climates. Theoretical and Applied Climatology, 2019, 137, 839-853.	1.3	9
85	Comment on Two Papers About the Generalized Complementary Evaporation Relationships by Crago et al Water Resources Research, 2020, 56, e2019WR026292.	1.7	9
86	Recent changes in climate seasonality in the inland river basin of Northwestern China. Journal of Hydrology, 2020, 590, 125212.	2.3	7
87	Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins. Hydrology and Earth System Sciences, 2021, 25, 3455-3469.	1.9	7
88	Combined effects of multiple factors on spatiotemporally varied soil moisture in China's Loess Plateau. Agricultural Water Management, 2021, 258, 107180.	2.4	7
89	Attributing vegetation change in an arid and cold watershed with complex ecosystems in northwest China. Ecological Indicators, 2022, 138, 108835.	2.6	7
90	Trends in temperature and precipitation extremes over Circum-Bohai-Sea region, China. Chinese Geographical Science, 2012, 22, 75-87.	1.2	6

#	Article	IF	CITATIONS
91	Connotation analysis of parameters in the generalized nonlinear advection aridity model. Agricultural and Forest Meteorology, 2021, 301-302, 108343.	1.9	5
92	Hydrochemical characteristics and groundwater quality in the thick loess deposits of China. Environmental Science and Pollution Research, 2022, 29, 8831-8850.	2.7	5
93	Evolution and Climate Drivers of NDVI of Natural Vegetation during the Growing Season in the Arid Region of Northwest China. Forests, 2022, 13, 1082.	0.9	5
94	Spatiotemporally varied extreme precipitation events simultaneously controlled by multiple circulation factors in China's Loess Plateau. International Journal of Climatology, 2022, 42, 6351-6372.	1.5	4
95	Verification of the applicability of PRECIS-simulated temperature on the Loess Plateau of China. Acta Ecologica Sinica, 2016, 36, 280-285.	0.9	3
96	Attribution analysis of the spatial variations in potential evapotranspiration on the Loess Plateau of China by a total differential equation. Hydrology Research, 2018, 49, 1902-1914.	1.1	3
97	The temptin gene of the clade Lophotrochozoa is involved in formation of the prismatic layer during biomineralization in molluscs. International Journal of Biological Macromolecules, 2021, 188, 800-810.	3.6	2