
## Andrew D Burrows

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6830414/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44, 4290-4321.                                                                         | 38.1 | 406       |
| 2  | Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 2011, 13, 3623.                  | 2.6  | 336       |
| 3  | Post‧ynthetic Modification of Tagged Metal–Organic Frameworks. Angewandte Chemie - International<br>Edition, 2008, 47, 8482-8486.                                                      | 13.8 | 276       |
| 4  | Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks.<br>CrystEngComm, 2005, 7, 548.                                                                 | 2.6  | 242       |
| 5  | Synthesis and post-synthetic modification of MIL-101(Cr)-NH2via a tandem diazotisation process.<br>Chemical Communications, 2012, 48, 12053.                                           | 4.1  | 166       |
| 6  | Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2.<br>CrystEngComm, 2011, 13, 6916.                                                     | 2.6  | 128       |
| 7  | The influence of hydrogen bonding on the structure of zinc co-ordination polymers â€. Dalton<br>Transactions RSC, 2000, , 3845-3854.                                                   | 2.3  | 106       |
| 8  | Sulfur-tagged metal–organic frameworks and their post-synthetic oxidation. Chemical<br>Communications, 2009, , 4218.                                                                   | 4.1  | 98        |
| 9  | Manufacturing of metal-organic framework monoliths andÂtheirÂapplication in CO 2 adsorption.<br>Microporous and Mesoporous Materials, 2015, 214, 149-155.                              | 4.4  | 97        |
| 10 | The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Transactions, 2007, , 2499.                                              | 3.3  | 66        |
| 11 | Syntheses, structures and properties of cadmium benzenedicarboxylate metal–organic frameworks.<br>Dalton Transactions, 2008, , 2465.                                                   | 3.3  | 63        |
| 12 | Dipyridyl β-diketonate complexes and their use as metalloligands in the formation of mixed-metal coordination networks. Dalton Transactions, 2012, 41, 4153.                           | 3.3  | 59        |
| 13 | Metal–organic frameworks post-synthetically modified with ferrocenyl groups: framework effects<br>on redox processes and surface conduction. Dalton Transactions, 2012, 41, 1475-1480. | 3.3  | 57        |
| 14 | Selective incorporation of functional dicarboxylates into zinc metal–organic frameworks. Chemical<br>Communications, 2011, 47, 3380.                                                   | 4.1  | 56        |
| 15 | Dipyridyl β-diketonate complexes: versatile polydentate metalloligands for metal–organic frameworks<br>and hydrogen-bonded networks. Chemical Communications, 2010, 46, 5067.          | 4.1  | 53        |
| 16 | Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2019, 212, 545-554.              | 7.9  | 53        |
| 17 | Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. Journal of Materials Science, 2017, 52, 3862-3875.                          | 3.7  | 51        |
| 18 | Rhodium-Promoted Linear Tetramerization and Cyclization of 3,3-Dimethylbut-l-yne. Angewandte<br>Chemie - International Edition, 1999, 38, 3043-3045.                                   | 13.8 | 50        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Subtle structural variation in copper metal-organic frameworks: syntheses, structures, magnetic properties and catalytic behaviour. Dalton Transactions, 2008, , 6788.                                   | 3.3  | 48        |
| 20 | The effect of carboxylate and N,Nâ€2-ditopic ligand lengths on the structures of copper and zinc coordination polymers. CrystEngComm, 2012, 14, 3658.                                                    | 2.6  | 46        |
| 21 | Incorporation by coordination and release of the iron chelator drug deferiprone from zinc-based metal–organic frameworks. Chemical Communications, 2013, 49, 11260.                                      | 4.1  | 43        |
| 22 | Hydrogen storage in polymer-based processable microporous composites. Journal of Materials<br>Chemistry A, 2017, 5, 18752-18761.                                                                         | 10.3 | 43        |
| 23 | Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. Journal of Materials Chemistry A, 2013, 1, 5497.                     | 10.3 | 41        |
| 24 | Ether functionalised aminophosphines: synthesis and co-ordination chemistry of palladium(II) and platinum(II) complexesâ€Sâ€. Dalton Transactions RSC, 2000, , 1669-1677.                                | 2.3  | 38        |
| 25 | Manipulation of Molecular and Supramolecular Structure in Nickel(II) Complexes through the<br>Orientation of Dicarboxylate Hydrogen Bonding Faces. Crystal Growth and Design, 2004, 4, 813-822.          | 3.0  | 38        |
| 26 | Incorporation of sulfonate dyes into hydrogen-bonded networks. CrystEngComm, 2004, 6, 429.                                                                                                               | 2.6  | 37        |
| 27 | Zinc dicarboxylate polymers and dimers: thiourea substitution as a tool in supramolecular synthesis.<br>Dalton Transactions, 2003, , 3840.                                                               | 3.3  | 35        |
| 28 | Mononuclearη2(4e)-Bonded Phosphaalkyne Complexes; Selective Formation of a<br>1,2-Diphosphacyclobutadiene Tantalum Complex. Angewandte Chemie - International Edition, 2001, 40,<br>3221-3224.           | 13.8 | 30        |
| 29 | Selective Cleavage of Pâ^'N Bonds and the Conversion of RhodiumN-Pyrrolyl Phosphine Complexes into<br>Diphosphoxane-Bridged Dimers. Inorganic Chemistry, 2002, 41, 1695-1697.                            | 4.0  | 30        |
| 30 | Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption, 2013, 19, 643-652.                                                                      | 3.0  | 29        |
| 31 | Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects. ACS<br>Food Science & Technology, 2022, 2, 1166-1183.                                                       | 2.7  | 29        |
| 32 | The synthesis and late transition metal chemistry of 7-aza-N-indolyl phosphines and the activity of<br>their palladium complexes in CO–ethene co-polymerisation. Dalton Transactions, 2003, , 4718-4730. | 3.3  | 28        |
| 33 | The synthesis and characterisation of coordination and hydrogen-bonded networks based on<br>4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid. Dalton Transactions, 2015, 44, 9269-9280.                      | 3.3  | 26        |
| 34 | Solid state interconversion of cages and coordination networks via conformational change of a semi-rigid ligand. Chemical Communications, 2010, 46, 5064.                                                | 4.1  | 25        |
| 35 | A reagentless thermal post-synthetic rearrangement of an allyloxy-tagged metal–organic framework.<br>Chemical Communications, 2013, 49, 990-992.                                                         | 4.1  | 25        |
| 36 | Ion flow in a zeolitic imidazolate framework results in ionic diode phenomena. Chemical<br>Communications, 2016, 52, 2792-2794.                                                                          | 4.1  | 25        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification. CrystEngComm, 2012, 14, 4112.                                                                                        | 2.6  | 24        |
| 38 | Nanoporous polymer-based composites for enhanced hydrogen storage. Adsorption, 2019, 25, 889-901.                                                                                                                                                | 3.0  | 24        |
| 39 | Complexes as metalloligands in network formation: synthesis and characterisation of a mixed-metal coordination network containing palladium and zinc. CrystEngComm, 2008, 10, 487.                                                               | 2.6  | 23        |
| 40 | Evaluating Iodine Uptake in a Crystalline Sponge Using Dynamic X-ray Crystallography. Inorganic<br>Chemistry, 2018, 57, 4959-4965.                                                                                                               | 4.0  | 23        |
| 41 | Comparison of MIL-101(Cr) metal-organic framework and 13X zeolite monoliths for CO2 capture.<br>Microporous and Mesoporous Materials, 2020, 308, 110525.                                                                                         | 4.4  | 22        |
| 42 | Incorporation of Dyes into Hydrogen-Bond Networks:  The Structures and Properties of Guanidinium<br>Sulfonate Derivatives Containing Ethyl Orange and 4-Aminoazobenzene-4â€~-sulfonate. Crystal Growth<br>and Design, 2006, 6, 546-554.          | 3.0  | 21        |
| 43 | The synthesis, structures and reactions of zinc and cobalt metal–organic frameworks incorporating an alkyne-based dicarboxylate linker. CrystEngComm, 2012, 14, 188-192.                                                                         | 2.6  | 20        |
| 44 | A facile single crystal to single crystal transition with significant structural contraction on desolvation. Chemical Communications, 2014, 50, 14436-14439.                                                                                     | 4.1  | 19        |
| 45 | Compositional control of pore geometry in multivariate metal–organic frameworks: an experimental and computational study. Dalton Transactions, 2016, 45, 4316-4326.                                                                              | 3.3  | 19        |
| 46 | Sterically hindered electron-withdrawing ligands: the reactions of N-carbazolyl phosphines with rhodium and palladium centres. Dalton Transactions, 2004, , 3321.                                                                                | 3.3  | 18        |
| 47 | Furnishing Amine-Functionalized Metal–Organic Frameworks with the β-Amidoketone Group by<br>Postsynthetic Modification. Inorganic Chemistry, 2016, 55, 10839-10842.                                                                              | 4.0  | 18        |
| 48 | Mixed-Component Sulfone–Sulfoxide Tagged Zinc IRMOFs: <i>In Situ</i> Ligand Oxidation, Carbon<br>Dioxide, and Water Sorption Studies. Crystal Growth and Design, 2017, 17, 2016-2023.                                                            | 3.0  | 18        |
| 49 | The effect of metal distribution on the luminescence properties of mixed-lanthanide metal–organic frameworks. Dalton Transactions, 2018, 47, 2360-2367.                                                                                          | 3.3  | 18        |
| 50 | Amine-functionalised aminophosphines: synthesis, reversible co-ordination to platinum and use in heteronuclear dimer formation. Dalton Transactions RSC, 2000, , 3615-3619.                                                                      | 2.3  | 17        |
| 51 | Diphosphines Possessing Electronically Different Donor Groups:Â Synthesis and Coordination<br>Chemistry of the Unsymmetrical Di(N-pyrrolyl)phosphino-Functionalized dppm Analogue<br>Ph2PCH2P(NC4H4)2. Inorganic Chemistry, 2003, 42, 7227-7238. | 4.0  | 17        |
| 52 | Synthesis, Structures, And Magnetic Behavior of New Anionic Copper(II) Sulfate Aggregates and<br>Chains. Inorganic Chemistry, 2012, 51, 10983-10989.                                                                                             | 4.0  | 17        |
| 53 | Role of Ethynyl-Derived Weak Hydrogen-Bond Interactions in the Supramolecular Structures of 1D,<br>2D, and 3D Coordination Polymers Containing 5-Ethynyl-1,3-benzenedicarboxylate. Crystal Growth and<br>Design, 2015, 15, 465-474.              | 3.0  | 17        |
| 54 | An Iodineâ€Vaporâ€Induced Cyclization in a Crystalline Molecular Flask. Angewandte Chemie -<br>International Edition, 2016, 55, 5943-5946.                                                                                                       | 13.8 | 17        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Post-synthetic modification of zirconium metal–organic frameworks by catalyst-free aza-Michael<br>additions. Dalton Transactions, 2018, 47, 14491-14496.                                         | 3.3 | 17        |
| 56 | Interpenetration isomers in isoreticular amine-tagged zinc MOFs. CrystEngComm, 2019, 21, 7498-7506.                                                                                              | 2.6 | 17        |
| 57 | Assessment of the long-term stability of the polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 332-337.            | 7.1 | 17        |
| 58 | Bismuth coordination networks containing deferiprone: synthesis, characterisation, stability and antibacterial activity. Dalton Transactions, 2015, 44, 13814-13817.                             | 3.3 | 16        |
| 59 | Chemical modification of the polymer of intrinsic microporosity PIM-1 for enhanced hydrogen storage. Adsorption, 2020, 26, 1083-1091.                                                            | 3.0 | 16        |
| 60 | Immobilisation of L-proline onto mixed-linker zirconium MOFs for heterogeneous catalysis of the aldol reaction. Chemical Engineering and Processing: Process Intensification, 2021, 161, 108315. | 3.6 | 16        |
| 61 | Synthesis and reactivity of rhodium(i) complexes containing keto-functionalised N-pyrrolyl phosphine<br>ligands. Dalton Transactions, 2003, , 3717.                                              | 3.3 | 15        |
| 62 | Substitution and derivatization reactions of a water soluble iron(ii) complex containing a self-assembled tetradentate phosphine ligand. Dalton Transactions, 2007, , 570-580.                   | 3.3 | 14        |
| 63 | Silver coordination networks and cages based on a semi-rigid bis(isoxazolyl) ligand. Dalton<br>Transactions, 2011, 40, 5483.                                                                     | 3.3 | 14        |
| 64 | The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker<br>metal–organic frameworks. CrystEngComm, 2017, 19, 5549-5557.                               | 2.6 | 14        |
| 65 | Postâ€synthetic Modification of MOFs. RSC Catalysis Series, 2013, , 31-75.                                                                                                                       | 0.1 | 13        |
| 66 | Structural manipulation through selective substitution of hydrogen bonding groups: the supramolecular structures of bis(thiosemicarbazidato)nickel complexes. CrystEngComm, 2002, 4, 539.        | 2.6 | 12        |
| 67 | Structural manipulation through control of hydrogen bonding faces: the effects of cation substitution on the guanidinium sulfonate structure. CrystEngComm, 2006, 8, 931.                        | 2.6 | 12        |
| 68 | Competition between coordination and hydrogen bonding in networks constructed using dipyridyl-1H-pyrazole ligands. CrystEngComm, 2011, 13, 1676-1682.                                            | 2.6 | 11        |
| 69 | Sodium Trihydrogen-1,4-Benzenediphosphonate: An Extended Coordination Network. Journal of Chemical Crystallography, 2011, 41, 1165-1168.                                                         | 1.1 | 11        |
| 70 | A molybdenum diphosphonate network structure exhibiting reversible dehydration and selective uptake of methanol. CrystEngComm, 2013, 15, 9301.                                                   | 2.6 | 11        |
| 71 | Postâ€5ynthetic Mannich Chemistry on Metalâ€Organic Frameworks: Systemâ€5pecific Reactivity and<br>Functionalityâ€Triggered Dissolution. Chemistry - A European Journal, 2018, 24, 11094-11102.  | 3.3 | 11        |
| 72 | The structural influence of ligand coordination and hydrogen bonding capabilities in the crystal engineering of metal thiosemicarbazide compounds with malonate. CrystEngComm, 2005, 7, 388.     | 2.6 | 10        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Postsynthetic modification of coordination networks. CrystEngComm, 2012, 14, 4095.                                                                                                                                                             | 2.6  | 10        |
| 74 | Secondary amine-functionalised metal–organic frameworks: direct syntheses versus tandem post-synthetic modifications. CrystEngComm, 2016, 18, 5710-5717.                                                                                       | 2.6  | 10        |
| 75 | Zinc(II) and cadmium(II) coordination polymers containing phenylenediacetate and<br>bis(imidazol-1-ylmethyl)benzene linkers: The effect of ligand isomers on the solid state structures.<br>Journal of Solid State Chemistry, 2017, 252, 8-21. | 2.9  | 10        |
| 76 | Inclusion and release of ant alarm pheromones from metal–organic frameworks. Dalton<br>Transactions, 2020, 49, 10334-10338.                                                                                                                    | 3.3  | 10        |
| 77 | Polymer of Intrinsic Microporosity (PIMâ€7) Coating Affects Triphasic Palladium Electrocatalysis.<br>ChemElectroChem, 2019, 6, 4307-4317.                                                                                                      | 3.4  | 9         |
| 78 | Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coordination<br>Chemistry Reviews, 2021, 439, 213928.                                                                                                          | 18.8 | 9         |
| 79 | Synthesis and characterisation of metal–organic frameworks containing bis(β-diketonate) linkers.<br>CrystEngComm, 2008, 10, 1474.                                                                                                              | 2.6  | 8         |
| 80 | Synthesis, Characterization, and Electrochemistry of a Series of Iron(II) Complexes Containing<br>Self-Assembled 1,5-Diaza-3,7-diphosphabicyclo[3.3.1]nonane Ligands. Inorganic Chemistry, 2009, 48,<br>9924-9935.                             | 4.0  | 8         |
| 81 | Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity.<br>ACS Applied Polymer Materials, 2021, 3, 920-928.                                                                                            | 4.4  | 8         |
| 82 | Redox Reactivity of Methylene Blue Bound in Pores of UMCM-1 Metal-Organic Frameworks. Molecular<br>Crystals and Liquid Crystals, 2012, 554, 12-21.                                                                                             | 0.9  | 7         |
| 83 | A new small molecule gelator and 3D framework ligator of lead( <scp>ii</scp> ). CrystEngComm, 2015, 17, 8139-8145.                                                                                                                             | 2.6  | 7         |
| 84 | Exploring Structure–Property Relationships of Silver 4â€ <del>(</del> Phenylethynyl)pyridine Complexes. European<br>Journal of Inorganic Chemistry, 2017, 2017, 1855-1867.                                                                     | 2.0  | 6         |
| 85 | Solid-state host–guest influences on a BODIPY dye hosted within a crystalline sponge. New Journal of<br>Chemistry, 2020, 44, 14108-14115.                                                                                                      | 2.8  | 6         |
| 86 | N-Pyrrolyl phosphine ligands: an analysis of their size, conformation and supramolecular interactions. CrystEngComm, 2001, 3, 217.                                                                                                             | 2.6  | 5         |
| 87 | Disorder within dicarboxylates and supramolecular structural control in hydrogen-bonded networks. CrystEngComm, 2003, 5, 355.                                                                                                                  | 2.6  | 5         |
| 88 | lsomerism and interpenetration in hydrogen-bonded network structures. CrystEngComm, 2008, 10,<br>15-18.                                                                                                                                        | 2.6  | 5         |
| 89 | The structures and properties of zinc(II) and cadmium(II) coordination polymers based on semi-rigid phenylenediacetate and 1,4-bis(2-methylimidazol-1-ylmethyl)benzene linkers. Journal of Solid State Chemistry, 2019, 269, 246-256.          | 2.9  | 5         |
| 90 | Enhancement of gas storage and separation properties of microporous polymers by simple chemical modifications. Multifunctional Materials, 2021, 4, 025002.                                                                                     | 3.7  | 5         |

| #   | Article                                                                                                                                                                          | IF               | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 91  | Synthesis, structures and properties of metal–organic frameworks prepared using a semi-rigid<br>tricarboxylate linker. CrystEngComm, 2022, 24, 863-876.                          | 2.6              | 5             |
| 92  | Post-synthetic modification of zinc metal-organic frameworks through palladium-catalysed carbon–carbon bond formation. Journal of Organometallic Chemistry, 2015, 792, 134-138.  | 1.8              | 4             |
| 93  | Design and optimisation of a multifunctional monolithic filter for fire escape masks. Chemical Engineering Journal, 2022, 430, 132775.                                           | 12.7             | 4             |
| 94  | 6 Nitrogen, phosphorus, arsenic, antimony andbismuth. Annual Reports on the Progress of Chemistry<br>Section A, 2001, 97, 81-93.                                                 | 0.8              | 3             |
| 95  | 6â€fâ€fNitrogen, phosphorus, arsenic, antimony and bismuth. Annual Reports on the Progress of Chemistry<br>Section A, 2003, 99, 83-99.                                           | 0.8              | 3             |
| 96  | Hydrogen-bonded linear thiourea hexads in tetra-n-butylammonium terephthalate inclusion compounds. CrystEngComm, 2003, 5, 226.                                                   | 2.6              | 3             |
| 97  | An Iodineâ€Vaporâ€Induced Cyclization in a Crystalline Molecular Flask. Angewandte Chemie, 2016, 128,<br>6047-6050.                                                              | 2.0              | 3             |
| 98  | Low burden, adsorbent and heat absorbing structures for respiratory protection in building fires.<br>Chemical Engineering Journal, 2021, 421, 127834.                            | 12.7             | 3             |
| 99  | Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFs. Inorganic Chemistry, 2022, 61, 1136-1144.                    | 4.0              | 3             |
| 100 | 6â€fâ€fNitrogen, phosphorus, arsenic, antimony and bismuth. Annual Reports on the Progress of Chemistry<br>Section A, 2002, 98, 77-91.                                           | 0.8              | 2             |
| 101 | 7ÂÂNitrogen, phosphorus, arsenic, antimony and bismuth. Annual Reports on the Progress of Chemistry<br>Section A, 2004, 100, 95-111.                                             | 0.8              | 2             |
| 102 | Inclusion of viologen cations leads to switchable metal–organic frameworks. Faraday Discussions,<br>2021, 225, 414-430.                                                          | 3.2              | 2             |
| 103 | Using geometric simulation software â€~GASP' to model conformational flexibility in a family of zinc<br>metal–organic frameworks. New Journal of Chemistry, 2021, 45, 8728-8737. | 2.8              | 2             |
| 104 | Advanced characterisation techniques: multi-scale, <i>in situ</i> , and time-resolved: general discussion. Faraday Discussions, 2021, 225, 152-167.                              | 3.2              | 2             |
| 105 | Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework. European Journal of Chemistry, 2019, 10, 195-200.         | 0.6              | 2             |
| 106 | The Chemistry of Metal–Organic Frameworks. Synthesis, Characterization, and Applications, 2 Bäde.<br>Herausgegeben von Stefan Kaskel Angewandte Chemie, 2017, 129, 1471-1471.    | 2.0              | 1             |
| 107 | Innentitelbild: An Iodineâ€Vaporâ€Induced Cyclization in a Crystalline Molecular Flask (Angew. Chem.) Tj ETQq1                                                                   | 1 0.78431<br>2.0 | .4 rgBT /Over |
| 108 | Development of Regenerative and Low Pressure Drop Adsorbent Structure For Biogas Upgrading. ,                                                                                    |                  | 0             |

108 2019, , .

| #   | Article                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Towards complex systems and devices: general discussion. Faraday Discussions, 2021, 225, 431-441. | 3.2 | 0         |